Thermal Dark Matter and the Higgs

SB, Carena, Shah, Wagner; 1712.09873

Sebastian Baum

Oskar Klein Centre for Cosmoparticle Physics
Stockholm University

UCLA Dark Matter 2018

WIMP Dark Matter

Vanilla thermal production:

$$\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{ cm}^3/\text{s}$$

but direct detection limits are very strong

Production and direct detection cross-sections must be decoupled (unless $m_{DM} \gg 100 \text{ GeV}$)

2 ways of decoupling $\langle \sigma v \rangle$ and $\sigma^{\rm SI}/\sigma^{\rm SD}$

2 ways of decoupling $\langle \sigma v \rangle$ and σ^{SI}/σ^{SD}

Suppress coupling of DM candidate to all states which could mediate direct detection signals

Then, one needs to boost the annihilation cross section:

- co-annihilation
- resonant annihilation

Griest&Seckel, PRD 43, 3197 (1991)

2 ways of decoupling $\langle \sigma v \rangle$ and σ^{SI}/σ^{SD}

Suppress coupling of DM candidate to all states which could mediate direct detection signals

Then, one needs to boost the annihilation cross section:

- co-annihilation
- resonant annihilation

Griest&Seckel, PRD 43, 3197 (1991)

Keep couplings large to yield thermal production cross-section via vanilla processes

Then, one needs to suppress the direct detection cross-section:

destructive interference

2 ways of decoupling $\langle \sigma v \rangle$ and σ^{SI}/σ^{SD}

Suppress coupling of DM candidate to all states which could mediate direct detection signals

Then, one needs to boost the annihilation cross section:

- co-annihilation
- resonant annihilation

Griest&Seckel, PRD 43, 3197 (1991)

Keep couplings large to yield thermal production cross-section via vanilla processes

Then, one needs to suppress the direct detection cross-section:

destructive interference

Both options require extended BSM sectors to supply either

- co-annihilation partners
- Multiple mediators allowing for destructive interference

Model-building

- Dark Matter candidate: Majorana fermion χ
- Type II 2 Higgs Doublet Model (2HDM) (H_u , H_d)
- Invoke a Z_3 symmetry under which all scalars/fermions transform as $\psi \to e^{2\pi i} \psi$ to forbid Majorana mass for χ
- Weak scale mass for χ can be obtained via the vacuum expectation value (vev) of an extra SM-singlet (complex) scalar S
 - \circ Generates weak scale mass for χ if vev $\langle S \rangle$ from same mechanism as EWSB
 - \circ S couples to SM only via mixing with neutral components of H_u , H_d after EWSB

Model-building

• Write down all operators to dimension $d \le 6$ arising from integrating out a heavy SU(2)-doublet Dirac fermion

(ignoring charged gauge boson interactions)

$$\mathcal{L} = -\delta \frac{\chi \chi}{\mu} \left(H_u \cdot H_d \right) \left(1 - \frac{\lambda \hat{S}}{\mu} \right) - \kappa S \chi \chi \left(1 + \xi \frac{H_d^{\dagger} H_d + H_u^{\dagger} H_u}{|\mu|^2} \right) + \text{h.c.}$$

$$+ \frac{\alpha}{|\mu|^2} \left\{ \chi^{\dagger} H_u^{\dagger} \bar{\sigma}^{\mu} \left[i \partial_{\mu} - \frac{g_1}{s_W} (T_3 - Q s_W^2) Z_{\mu} \right] (\chi H_u) \right.$$

$$+ \chi^{\dagger} H_d^{\dagger} \bar{\sigma}^{\mu} \left[i \partial_{\mu} - \frac{g_1}{s_W} (T_3 - Q s_W^2) Z_{\mu} \right] (\chi H_d) \right\},$$

- DM mass $m_{\chi} = 2\kappa \langle S \rangle$
- Heavy SU(2)-doublet fermion mass: $\mu = \lambda \langle S \rangle$

Model phenomenology. Higgs sector

Rotate scalars to Higgs basis

$$\begin{split} H^{\mathrm{SM}} &= \sqrt{2}\mathrm{Re}\left(\sin\beta H_u^0 + \cos\beta H_d^0\right), \quad \blacktriangleleft \quad \text{SM-like} \\ G^0 &= \sqrt{2}\mathrm{Im}\left(\sin\beta H_u^0 - \cos\beta H_d^0\right), \quad \blacktriangleleft \quad \text{Neutral Goldstone (Z)} \\ H^{\mathrm{NSM}} &= \sqrt{2}\mathrm{Re}\left(\cos\beta H_u^0 - \sin\beta H_d^0\right), \quad \blacktriangleleft \quad \text{MSSM-like scalar} \\ A^{\mathrm{NSM}} &= \sqrt{2}\mathrm{Im}\left(\cos\beta H_u^0 + \sin\beta H_d^0\right), \quad \blacktriangleleft \quad \text{MSSM-like pseudoscalar} \end{split}$$

- + scalar (H^S) and pseudoscalar (A^S) from singlet
- 125 GeV Higgs pheno requires approximate alignment: h₁₂₅~HSM

Model phenomenology. DM

- Thermal production via
 - $\circ \quad \chi\chi o qar q$ (important contribution from longitudinal Z/neutral Goldstone)
 - Usually small contributions from $\chi\chi \to h_i h_j / h_i a_j / WW / ZZ$
- SI Direct Detection mediated predominantly by CP-even Higgs bosons
 - EFT operators allow for blind spot where $g_{\chi\chi h} \rightarrow 0$
 - Presence of 3 CP-even Higgses allows for destructive interference

Model phenomenology. DM

Example of allowed couplings / EFT parameters

(standard thermal production & current Direct Detection limits)

Does this really work? (aka UV completion)

 $(Z_3$ -invariant) Next to minimal Supersymmetric Standard Model (NMSSM)

- MSSM particle content + one extra SM-singlet chiral superfield
- Same Higgs sector as our model (2HDM+S)
- Fermionic component of singlet ('singlino') plays role of our DM candidate
- Mature numerical tools exist to study DM & collider phenomenology
- Besides the singlino, the NMSSM contains a second SM-singlet fermion, the bino
 - Smaller couplings to Higgs sector than singlino
 - EFT model can be extended in simple fashion to include bino

12

Sebastian Baum UCLA DM, 2018-02-22

NMSSM: Singlino DM. Production

- predominantly vanilla
 thermal production
 dominated by annihilations
 into top quarks
- Longitudinal Z (neutral Goldstone mode) plays prominent role

NMSSM: Singlino DM. Direct Detection

SI Direct Detection cross section suppressed by:

- Proximity to h₁₂₅ blind spot (Cheung+ 1406.6372, Badziak+ 1512.02472)
- Destructive interference between CP-even Higgs mass eigenstates

Sebastian Baum UCLA DM, 2018-02-22

NMSSM: (new 'well-tempered') Bino DM

- Thermal production via co-annihilation with singlino
- SI Direct Detection cross section suppressed by h₁₂₅ blind spot proximity

NMSSM: DM. Direct Detection Potential

- As yet, SI limits are much more relevant
- But, increasing sensitivity of SD experiments by ~ 2 orders of magnitude would probe most of the remaining parameter space!

Conclusions

- Stringent Direct Detection limits require decoupling of SI detection cross section and annihilation cross section
 - Either, one enhances the production cross-section by co-annihilation or resonant annihilation,
 - Or, one suppresses the SI detection cross section by destructive interference
- Qualitative features studied in Majorana DM + (2HDM+S) model
- Tested validity of results and extended numerical study in NMSSM
 - Singlino region: Vanilla thermal production (via the longitudinal Z), h_{125} blind spot + destructive interference for direct detection
 - New 'well-tempered' Bino region: co-annihilation with singlino for thermal production, blind-spot for direct detection
 - Both can be probed by SD experiments in near future!

17

Sebastian Baum UCLA DM, 2018-02-22