

Dark matter results from ATLAS and CMS

Matteo Cremonesi

On Behalf of the ATLAS and CMS Collaborations

In this talk:

- Description of the general approach for dark matter searches at the LHC
 - both experimental techniques and theoretical interpretation
- Collection of results from ATLAS and CMS experiment, with focus on:
 - the Mono-X program (i.e. no dijet or SUSY reinterpretations)
 - newest results, based on data collected in 2016

for full results, please visit the ATLAS/CMS Exotica webpage:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Introduction

- From cosmological observations,
 85% of the matter comprised of dark
 matter (DM)
- What we know:
 - DM does not interact electro-magnetically
 - DM interacts gravitationally

We know nothing about its nature and properties

Search for DM

- Direct detection (DD): look for nuclear recoil produced when a DM particle collides with an atomic nucleus of a target.
- Indirect detection (ID): look for the products of the annihilation or the decay of DM particles.
- Collider approach: DM production

lirect detectior

Mono-X Searches

Collider experiments are NOT designed

to directly reconstruct DM

Experimental approach:

- trigger events using recoiling object(s)
- Initial state radiation (ISR) of a particle X:
 - X = jet/gamma/W/Z
- measure missing transverse momentum (MET)

$$MET = -\Sigma_{All\ particles} p_T$$

Why at Colliders

- If DM interacts, it does through a mediator
- At colliders, unique possibility to search for the mediator and measure its properties
 - mass, spin

From EFT to Simplified Models

Simplified Models

Model described by a small number of free parameters:

- M_{med}, M_{DM}, g_{SM}, g_{DM}
- DM:
 - single fermionic particle
 - stable and non-interacting
- Mediator
 - shapes of kinematic distributions not altered by coupling variations
 - $g_{SM}=0.25$, $g_{DM}=1(spin-1)$
 - g_{SM}=1, g_{DM}=1(spin-0)
 - Axial/Vector, Scalar/Pseudoscalar
 - minimal decay width (e.g. to DM and to quarks)

LHC DM Forum, arxiv:1507.00966v1

Presentation of Results

LHC DM WG, arxiv:1603.04156

Presentation of Results

LHC DM WG, arxiv:1603.04156

Mono-jet Signature

Mono-jet Results

13 TeV, 2015+2016 dataset

Hadronic Mono-V Signature

Boosted W/Z boson decaying hadronically

=> large-radius jet recoiling against MET

W/Z-tagging Large-Cone Jets

High momentum large-radius jet with

- invariant mass ~mW/Z (80-90 GeV)
- two prongs identified by studying jet substructure

Monojet/Mono-V Combination

Mono-jet + Hadronic Mono-V Results

13 TeV, 2016 dataset

Leptonic Mono-Z Results

PLB <u>2017.11.049</u>

CMS-EXO-16-052

Mono-photon Results

13 TeV, 2015+2016 dataset

Eur. Phys. J. C 77 (2017) 393

Comparison

Hadronic Mono-H(->bb) Signature

Boosted Higgs boson decaying to a b-quark pair

Hadronic Mono-H(->bb) Signature

Boosted Higgs boson decaying to a b-quark pair

Hadronic Mono-H(->bb) Signature

Boosted Higgs boson decaying to a b-quark pair

Higgs-Tagging Large-Cone Jets

High momentum large-radius jet with

- invariant mass ~mHiggs (125 GeV)
- two prongs identified by studying jet substructure
- b-quark identification inside the largeradius jet cone

Mono-H(->bb) Results

13 TeV, 2015+2016 dataset

Mono-H(->yy) Results

13 TeV, 2015+2016 dataset

Hadronic Mono-top Signature

Boosted top quark decaying hadronically

Top-Tagging Large-Cone Jets

High momentum large-radius jet with

- invariant mass ~mtop (175 GeV)
- three prongs identified by studying jet substructure
- b-quark identification inside the largeradius jet cone

Hadronic Monotop Results

13 TeV, 2016 dataset

arXiv:1801.08427

Conclusions

- Broad program of DM searches at the LHC, complementary to DD/ID
- Still no sign of DM, new dataset collected in 2017 still needs to be analyzed
 - doubling the current statistics
 - new results expected by the summer

Backup

Dijet DM Interpretation

mono-jet

classic dijet

Z' is possibly same particle

=> interpret in single model with same coupling

mono-jet

light boosted resonances

Z' is possibly same particle

=> interpret in single model with same coupling

- BR of mediator to jets depends on m_{DM}:
 - for large m_{DM}, BR to jets is 100%
 - for mom around 1 GeV, BR to DM is about the same as BR to jets
 - dijet signal rate drops by a factor
 of ~2
 - above $m_{DM} = M_{Med}/2$ the limit is constant

- BR of mediator to jets depends on m_{DM}:
 - for large m_{DM}, BR to jets is 100%
 - for mom around 1 GeV, BR to DM is about the same as BR to jets
 - dijet signal rate drops by a factor
 of ~2
 - above $m_{DM} = M_{Med}/2$ the limit is constant

- BR of mediator to jets depends on m_{DM}:
 - for large m_{DM}, BR to jets is 100%
 - for mom around 1 GeV, BR to DM is about the same as BR to jets
 - dijet signal rate drops by a factor
 of ~2
 - above $m_{DM} = M_{Med}/2$ the limit is constant

Comparison

Dijet Limit Conversion

- Take the limits on gaussian-shaped resonances
- Compare these to MadGraph predictions for signal rates and shapes, after parton shower, detector smearing, and analysis cuts
- Not a full MC interpretation
 - from other studies we expect that it will match a full MC very well
 - Z' limits in the 13 TeV paper and it agrees with those in the large m_{DM} limit

$$\sigma_{
m SI} \simeq 6.9 imes 10^{-41}
m cm^2 \cdot \left(rac{g_q g_{
m DM}}{0.25}
ight)^2 \left(rac{1
m TeV}{M_{
m med}}
ight)^4 \left(rac{\mu_{n\chi}}{1
m GeV}
ight)^2$$

DM Limit Conversion

- Assumption of coupling is one of the most limiting factors
- Collider limits are converted into nucleon-scattering cross section
- SI-DM nucleon scattering cross section:

$$\sigma_{
m SI} = rac{f^2(g_q)g_{
m DM}^2\mu_{n\chi}^2}{\pi M_{
m med}^4}$$

• DM-nucleon reduced mass: $\mu_{n\chi} = m_n m_{\mathrm{DM}}/(m_n + m_{\mathrm{DM}})$ $m_n \simeq 0.939\,\mathrm{GeV}$

$$\mu_{n\chi} = m_n m_{\rm DM}/(m_n + m_{\rm DM})$$

Vector Mediator-nucleon coupling:

$$f(g_q) = 3g_q$$

• =>
$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-41} \ {
m cm}^2 \cdot \left(\frac{g_q g_{
m DM}}{0.25}\right)^2 \left(\frac{1 \, {
m TeV}}{M_{
m med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \, {
m GeV}}\right)^2$$

