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Introduction
Axion Dark Matter

Large scale structure and CMB
observations are very well fit by cold
dark matter.
A favorite candidate: Axion.
The axion is the pseudo-Goldstone
boson associated with a
spontaneously broken symmetry
U(1)PQ (Peccei and Quinn, 1977).

The axion is a field that acquires a mass in the
early universe, after the QCD phase transition, and
can then begin to act as a form of cold dark matter
(Preskill et al. 1983; Abbott and Sikivie 1983).

If the PQ phase transition happens after inflation,
then the field remains inhomogeneous from one
Hubble patch to the next as suggested by causality.

Large fluctuations already present in the axion field
after the QCD phase transition can lead to the
formation of a kind of Bose-Einstein condensate.
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Stable and Unstable Branches
Non-relativistic limit

Axions are described in field theory by a real scalar field φ(x):

L =
√
−g
[1

2
gµν∂µφ∂νφ− V (φ)

]
, with V (φ) = Λ4[1− cos(φ/fa)] . (1)

Here Λ ∼ 0.1 GeV, fa is the PQ symmetry breaking scale, and m = Λ2/fa. We
shall often take m = 10−5 eV with fa = 6x1011 GeV.
The non-relativistic field theory approximation for axions is often very well
justified. It is useful to express the real field φ(x) as

φ(x, t) =
1
√

2m

[
e−imtψ(x, t) + eimtψ∗(x, t)

]
. (2)

We want to replace this expression into the axion Lagrangian density:
Drop all terms proportional to a power of e−imt or eimt .
Take |ψ̇|/m� |ψ| in the kinetic term of the Lagrangian density.
Use the weak field Newtonian metric g00 = 1 + 2φN (ψ∗, ψ).

We obtain Lnr = i
2

(
ψ̇ψ∗ − ψψ̇∗

)
− ∇ψ

∗·∇ψ
2m − Vnr (ψ,ψ∗)−mψ∗ψ φN (ψ∗, ψ) ,

where the non-relativistic effective potential is Vnr (ψ,ψ∗) = −ψ
∗2ψ2

16 f 2
a
.
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Now, we treat ψ and ψ∗ as independent fields and calculate the total
Hamiltonian as: H = Hkin + Hint + Hgrav .

Hkin ≡
∫

d3x
1

2m
∇ψ∗ ·∇ψ , Hint ≡

∫
d3xVnr (ψ,ψ∗) , (3)

Hgrav ≡ −
Gm2

2

∫
d3x
∫

d3x ′
ψ∗(x)ψ∗(x′)ψ(x)ψ(x′)

|x− x′|
. (4)

The (non-relativistic) full equation of motion is

i ψ̇= −
∇2ψ

2m
− Gm2 ψ

∫
d3x ′

ψ∗(x′)ψ(x′)
|x− x′|

+
∂

∂ψ∗
Vnr (ψ,ψ∗) (5)

The local number density of particles, n(x), and local mass density, ρ(x), are
given by the usual expressions:

n(x) = ψ∗(x)ψ(x) , (6)
ρ(x) = mψ∗(x)ψ(x) . (7)
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Stable and Unstable Branches
Spherically Symmetric Ansatz

The ground is guaranteed to be spherically symmetric to avoid additional energy
from angular momentum → ψg (r , t) = Ψ(r) e−i µ t .
The time independent field equation for a spherically symmetric eigenstate is

µΨ = −
1

2m

(
Ψ′′ +

2
r

Ψ′
)
− 4πGm2Ψ

∫ ∞
0

dr ′ r ′2
Ψ(r ′)2

r>
+

1
2
∂

∂Ψ
Vnr (Ψ) . (8)

Far field region:
Ψ→ 0 as r →∞.
At large distances we can ignore the
self-interactions.
In the gravitational term we can replace
r> → r in the far region.

Hence

µΨ ≈ −
1

2m

(
Ψ′′ +

2
r

Ψ′
)
−

Gm2N
r

Ψ (far region) .

(9)

Identical to the structure of the time
independent Schrödinger equation for the
hydrogen atom (Gm2N → e2). The ground
state solution is:

Ψ(r) = Polyn(r)e−Gm3N r/n (far region) .
(10)

Near field region:
Corrections from self-interactions become
important and the structure of the
gravitational term is altered.
There are no known full analytical solutions.
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A simple choice (decay length scale
R acts as a variational parameter):

ΨR (r) =

√
N
π R3 e−r/R . (11)

The total number of particles,
N =

∫
d3x n(x), is ensured by the

prefactor of Eq. (11) and is assumed
to be fixed as we perform our
variation.

The exponential ansatz has the
disadvantage that it cannot be
correct for small r because we need
that Ψ′ → 0 as r → 0.

Better options are:

Ψ(r) =

√
3N
π3R3 sech(r/R) , (12)

Ψ(r) =

√
N

7πR3 (1 + r/R)e−r/R .

(13)

Inserting any localized ansatz of a single variational parameter R into the Total
Hamiltonian and using R̃ ≡ mfa

√
G R , Ñ ≡ m2√G

fa N , H̃ ≡ m
f 3
a
√

G
H , we have

H̃(R̃) = a
Ñ
R̃2
− b

Ñ2

R̃
− c

Ñ2

R̃3
. (14)
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Extremizing the Hamiltonian H̃ with respect to R̃, we obtain the condition for
stationary solutions.
For any values of (a, b, c) there is a stable branch for large R̃ and an unstable

branch for low R̃, given by R̃ =
(

a ±
√

a2 − 3bcÑ2
)
/(bÑ) .

The maximum value of Ñ is given by
Ñ < Ñmax = a/

√
3bc.

We have Ñmax ≈ (10.36, 10.12, 10.15)
for exponential, sech, and exponential
× linear ansatz, respectively.
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Stable and Unstable Branches
Numerical Solution

We would like to solve the full equation of motion for the axion field, Eq. (5),
within the spherically symmetric ansatz:

i
∂ψ̃

∂ t̃
= −

1
2r̃

∂2

∂ r̃2

(
r̃ ψ̃
)

+ φ̃N ψ̃ −
1
8
|ψ̃|2ψ̃ and

1
r̃
∂2

∂ r̃2

(
r̃ φ̃N
)

= 4π|ψ̃|2 . (15)

Here ψ̃(r̃ , t̃) and φ̃N (r̃ , t̃) are the axion field and the newtonian potential,
respectively, and r̃ and t̃ are the radial and time coordinates, respectively, all in
dimensionless variables.

The time evolution of a clump that
lives exactly on the stable branch
solution is the expected.
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We perturb the stable and unstable solutions: ψ̃initial (r̃) = (1 + ε)Re(Ψ(r̃))
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Stable and Unstable Branches
Physical Parameters

Using f̃a ≡ fa/(6× 1011 GeV) and
m̃ ≡ m/(10−5 eV), we have for the
stable branch

Nmax≈ 8× 1059 (m̃−2 f̃a) , (16)

Mmax≈ 1.4× 1019 kg (m̃−1 f̃a) , (17)

R90,min≈ 130 km (m̃−1 f̃ −1
a ) , (18)

The typical number of axions in
inhomogeneous patches in the early
universe is (Guth et al. 2015):

Nξ ∼
TeqM3

pl

T 3
QCDm

∼ 1061m̃−1. (19)

The ground state is well described
by the weak field gravitational
approximation :

R
RS

>
Rmin

2GMmax
≈ 4× 1012 f̃ −2

a .

(20)

So there is no possibility for black
hole formation of these low density
objects when fa � Mpl .

Strong field effects can emerge if
one were to move away from the
traditional QCD axion and
investigate extremely high values of
fa (Helfer et al. 2017).
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Dense Branch and Axitons

We need ω ≈ m to trust non-relativistic
approximations (φ << fa).
For the blue stable branch this
condition is always satisfied. For the red
unstable branch this condition is broken
when Ñ . O(10−5).

We ignore the gravitational corrections
and take an approximate periodic clump
solution as

φ(r , t) = Φ(r) cos(ω t) . (21)

We insert this into the relativistic
Hamiltonian (ignoring gravity) and
average over a period of oscillation
T = 2π/ω as

〈H〉 =
1
T

∫ T

0
dt H. (22)

To specify the condition for ω, we take
the time average of equation of motion
and integrate over space.

We use an exponential ansatz for the
radial profile: Φ(r) = 2π ε fa e−r/R ,
where 0 < ε < 1→ |φ| < 2π fa.

We extremize 〈H〉 using
〈N〉 =

∫
d3x ω〈φ2〉.
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Repulsive Self-Interactions

Consider generic light scalar dark matter candidate that may be described by a
repulsive + λrφ4 interaction.
In the non-relativistic regime, V (φ) = 1

2 m2φ2 + λr
4! φ

4 leads to exactly the same
set of equations as we described earlier, but now

Vnr (ψ, psi∗) = λr
ψ∗2ψ2

16m2 . (23)

We again pass to the dimensionless variables as before (fa → m/
√
λr ). For any

localized clump ansatz of a single length scale R̃, we have

H̃(R̃) ≈ a
Ñ
R̃2
− b

Ñ2

R̃
+ c

Ñ2

R̃3
. (24)

Unlike the previous case of attractive
interactions, here there is only one
branch of extrema, which is stable,
and given by R̃ = a+

√
a2+3bcÑ2

nÑ
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Conclusion

Mapping out the basic solutions of the axion-gravity-self-interacting system, we
find that:

For sufficiently spatially large clumps, gravity dominates, and the system is stable.

For sufficiently spatially small clumps, self-interaction dominates, and the system is
unstable.

For extremely small clumps, the full cosine potential and relativistic corrections become
important, and a new (narrow) axiton-branch emerges.

The typical number of axions in a clump is comparable to the typical number of
axions in one coherence length in the early universe (scenario in which the PQ
phase transition occurs after inflation).

We also examined more generic scalar dark matter, allowing for repulsive
self-interactions, which has only a stable clump solution branch that extends to
arbitrarily large particle number and its rather compact.
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