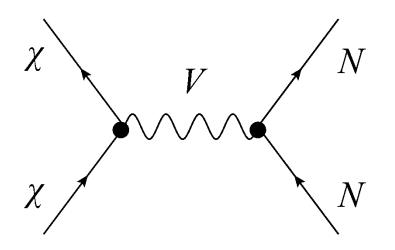
New Laboratory and Astrophysical Probes for Low-Mass Dark Matter and Dark Bosons

Yevgeny Stadnik

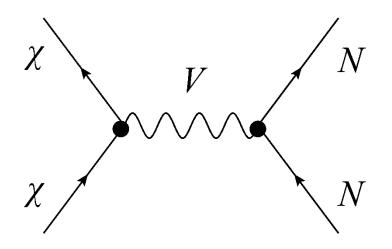
Johannes Gutenberg University, Mainz, Germany

Collaborators (Theory):

Victor Flambaum, Vladimir Dzuba, Benjamin Roberts

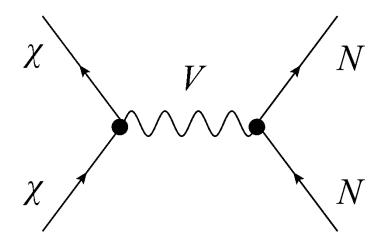

Collaborators (Experiment):

nEDM collaboration at PSI and Sussex



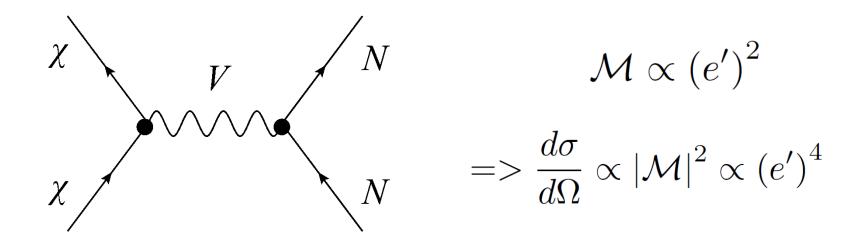
UCLA Dark Matter 2018, Los Angeles, February 2018

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

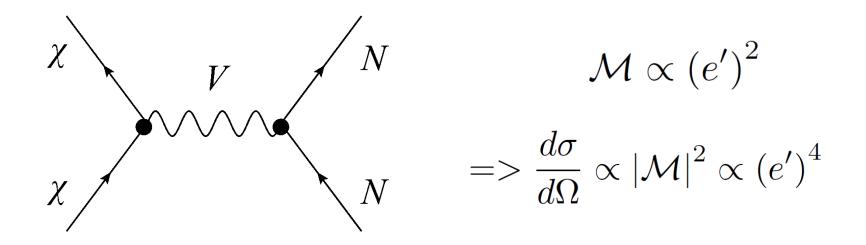


Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

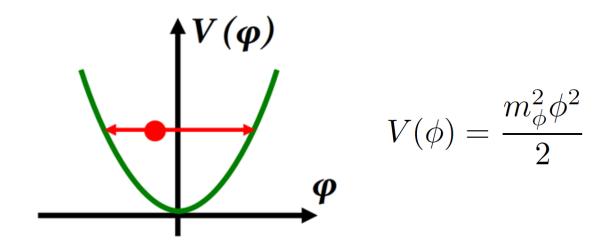
 $\mathcal{M} \propto \left(e'
ight)^2$


Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

 $\mathcal{M} \propto \left(e'
ight)^2$


 $\sum N => \frac{d\sigma}{d\Omega} \propto |\mathcal{M}|^2 \propto (e')^4$

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.


<u>Challenge</u>: Observable is **fourth power** in a small interaction constant ($e^{-} << 1$)!

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles ($m_{\chi} \sim \text{GeV}$) have not yet produced a strong positive result.

Question: Can we instead look for effects of dark matter that are **<u>first power</u>** in the interaction constant?

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since $cold (E_{\varphi} \approx m_{\varphi}c^2)$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since $cold (E_{\varphi} \approx m_{\varphi}c^2)$
- Classical field for $m_{\varphi} \le 0.1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since $cold (E_{\varphi} \approx m_{\varphi}c^2)$
- Classical field for $m_{\varphi} \le 0.1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser"

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since $cold (E_{\varphi} \approx m_{\varphi}c^2)$
- Classical field for $m_{\varphi} \le 0.1 \text{ eV}$, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser"
- $10^{-22} \text{ eV} \le m_{\varphi} \le 0.1 \text{ eV} <=> 10^{-8} \text{ Hz} \le f \le 10^{13} \text{ Hz}$ \uparrow $\lambda_{dB,\varphi} \le L_{dwarf galaxy} \sim 1 \text{ kpc}$ Classical field

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since $cold (E_{\varphi} \approx m_{\varphi}c^2)$
- Classical field for $m_{\varphi} \le 0.1 \text{ eV}$, since $n_{\varphi}(\lambda_{\text{dB},\varphi}/2\pi)^3 >> 1$
- Coherent + classical DM field = "Cosmic laser"
- $10^{-22} \text{ eV} \le m_{\varphi} \le 0.1 \text{ eV} \iff 10^{-8} \text{ Hz} \le f \le 10^{13} \text{ Hz}$ \uparrow $\lambda_{\text{dB},\varphi} \le L_{\text{dwarf galaxy}} \sim 1 \text{ kpc}$ Classical field

• $m_{\varphi} \sim 10^{-22} \text{ eV} \iff T \sim 1 \text{ year}$

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- $10^{-22} \text{ eV} \le m_{\varphi} \le 0.1 \text{ eV}$ inaccessible to traditional "scatteringoff-nuclei" searches, since $|\mathbf{p}_{\varphi}| \sim 10^{-3}m_{\varphi}$ is extremely small => recoil effects suppressed

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- $10^{-22} \text{ eV} \le m_{\varphi} \le 0.1 \text{ eV}$ inaccessible to traditional "scatteringoff-nuclei" searches, since $|\mathbf{p}_{\varphi}| \sim 10^{-3}m_{\varphi}$ is extremely small => recoil effects suppressed
- BUT can look for novel effects of low-mass DM in low-energy atomic and astrophysical phenomena that are <u>first power</u> in the interaction constant κ:

$$\mathcal{L}_{\text{eff}} = \kappa \phi^n X_{\text{SM}} X_{\text{SM}} \implies \mathcal{O} \propto \kappa$$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- $10^{-22} \text{ eV} \le m_{\varphi} \le 0.1 \text{ eV}$ inaccessible to traditional "scatteringoff-nuclei" searches, since $|\mathbf{p}_{\varphi}| \sim 10^{-3}m_{\varphi}$ is extremely small => recoil effects suppressed
- BUT can look for novel effects of low-mass DM in low-energy atomic and astrophysical phenomena that are <u>first power</u> in the interaction constant κ:

$$\mathcal{L}_{\text{eff}} = \kappa \phi^n X_{\text{SM}} X_{\text{SM}} \implies \mathcal{O} \propto \kappa$$

First-power effects => Improved sensitivity to certain DM interactions by up to <u>15 orders of magnitude</u> (!)

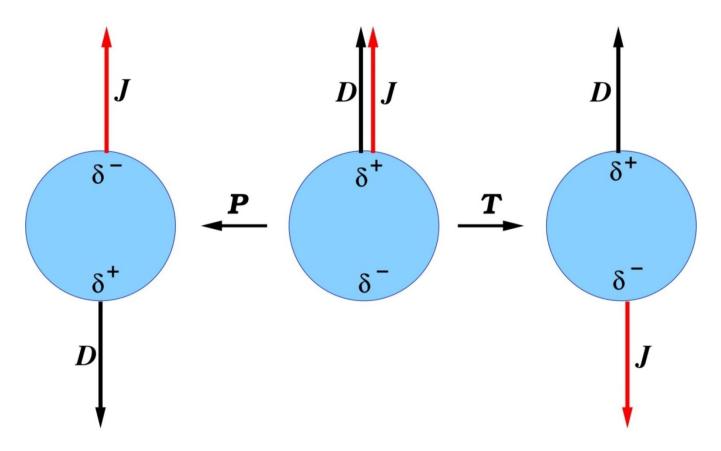
QCD axion resolves strong CP problem

Pseudoscalars (Axions): $\varphi \xrightarrow{P} - \varphi$

→ Time-varying spindependent effects

"Axion Wind" Spin-Precession Effect

[Flambaum, talk at *Patras Workshop*, 2013], [Graham, Rajendran, *PRD* **88**, 035023 (2013)], [Stadnik, Flambaum, *PRD* **89**, 043522 (2014)]


D = (f)

Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, *PRD* 84, 055013 (2011)] Atoms and molecules: [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

Electric Dipole Moment (EDM) = parity (P) and time-

reversal-invariance (T) violating electric moment

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\gamma_n B}{\gamma_{\rm Hg} B} \right| + R(t)$$

$$\uparrow$$

$$f$$

$$f$$

$$B$$
-field Axion DW effect effect

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\gamma_n R}{\gamma_{\rm Hg} R} \right| + R(t)$$

$$\uparrow$$

$$f$$

$$f$$

$$B$$
-field Axion DM effect effect

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\gamma_n R}{\gamma_{\rm Hg} R} \right| + R(t) \qquad \qquad \mathbf{E} \quad \boldsymbol{\sigma} \quad \mathbf{B}$$
$$R_{\rm EDM}(t) \propto \cos(m_a t) \qquad \qquad \mathbf{f} \quad \mathbf{f} \quad \mathbf{f} \quad \mathbf{f}$$

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); arXiv:1511.04098; Stadnik, PhD Thesis (2017)]

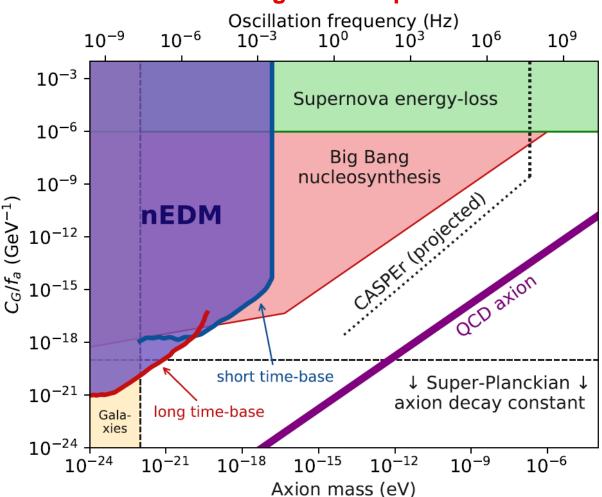
Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

 $\omega_1 =$

$$\frac{\nu_n}{\nu_{\rm Hg}} = \left| \frac{\gamma_n R}{\gamma_{\rm Hg} R} \right| + R(t)$$

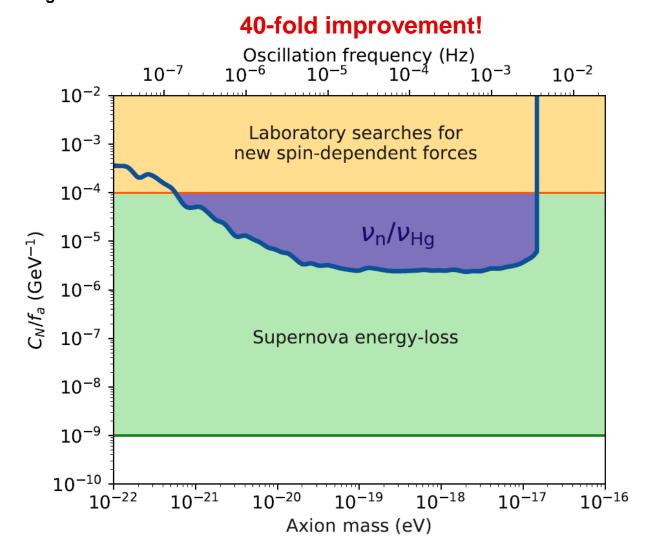
$$R_{\rm EDM}(t) \propto \cos(m_a t)$$


$$R_{\rm wind}(t) \propto \sum_{i=1,2,3} A_i \sin(\omega_i t)$$

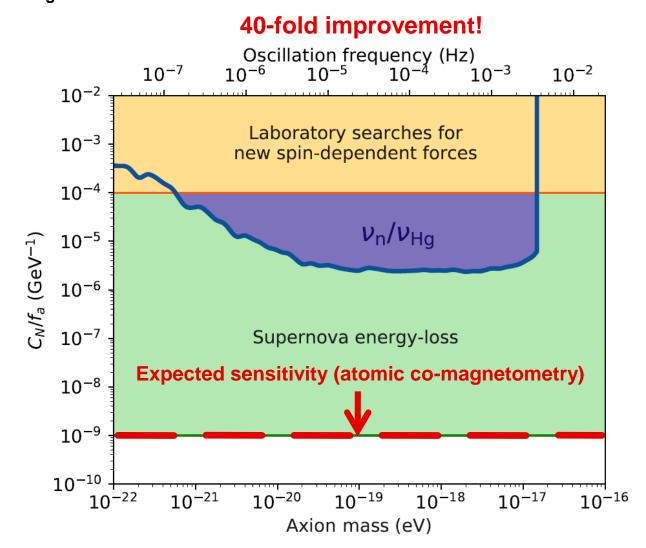
$$m_a, \ \omega_2 = m_a + \Omega_{\rm sidereal}, \ \omega_3 = |m_a - \Omega_{\rm sidereal}|$$

$$Earth's rotation$$

Constraints on Interaction of Axion Dark Matter with Gluons


nEDM constraints: [nEDM collaboration, PRX 7, 041034 (2017)]

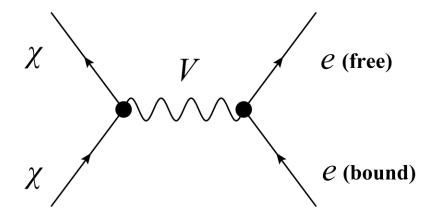
3 orders of magnitude improvement!


Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Hq} constraints: [nEDM collaboration, PRX 7, 041034 (2017)]

Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Hq} constraints: [nEDM collaboration, PRX 7, 041034 (2017)]



Summary

- New classes of dark matter effects that are <u>first power</u> in the underlying interaction constant => Up to <u>15 orders of magnitude improvement</u>
- Improved limits on dark bosons from atomic experiments (independent of $\rho_{\rm DM}$)
- Relativistic atomic effects increase WIMP-electron ionising scattering rate by up to <u>a factor of 1000</u> (see also recent XENON100 analysis)
- More details in full slides (also on ResearchGate)

WIMP-Electron Ionising Scattering

• Search for annual modulation in σ_{xe} (velocity dependent)

- Previous analyses treated atomic electrons nonrelativistically
- Non-relativistic treatment of atomic electrons inadequate for m_x > 1 GeV!
- Need relativistic atomic calculations for $m_{\chi} > 1$ GeV!

Why are electron relativistic effects so important?

[Roberts, Flambaum, Gribakin, *PRL* **116**, 023201 (2016)], [Roberts, Dzuba, Flambaum, Pospelov, Stadnik, *PRD* **93**, 115037 (2016)]

- Consider $m_{\chi} \sim 10 \text{ GeV}, < v_{\chi} > \sim 10^{-3}$
- <q>~ <p_x> ~ 10 MeV >> m_e
 => Relativistic process on atomic scale!
- Large $q \sim 1000$ a.u. corresponds to small $r \sim 1/q \ll a_B/Z$
- Largest contribution to $\sigma_{\chi e}$ comes from innermost atomic orbitals for $<\Delta E > ~ < T_{\chi} > ~ 5$ keV:
 - Na (1s)
 - Ge (2s)
 - I (3s/2s)
 - Xe (3*s*/2*s*)
 - TI (3s)

Why are electron relativistic effects so important?

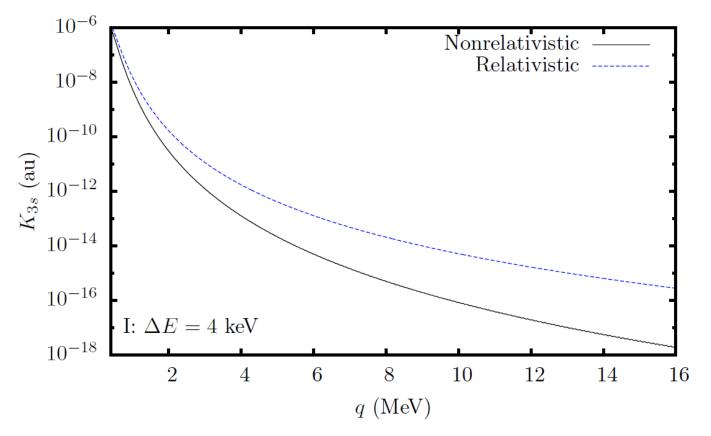
[Roberts, Flambaum, Gribakin, *PRL* **116**, 023201 (2016)], [Roberts, Dzuba, Flambaum, Pospelov, Stadnik, *PRD* **93**, 115037 (2016)]

• Non-relativistic and relativistic contributions to $\sigma_{\chi e}$ are very different for large q, for scalar, pseudoscalar, vector and pseudovector interaction portals:

Non-relativistic [s-wave, $\psi \propto r^0(1 - Zr/a_B)$ as $r \rightarrow 0$]*:

$$d\sigma_{\chi e} \propto 1/q^8$$

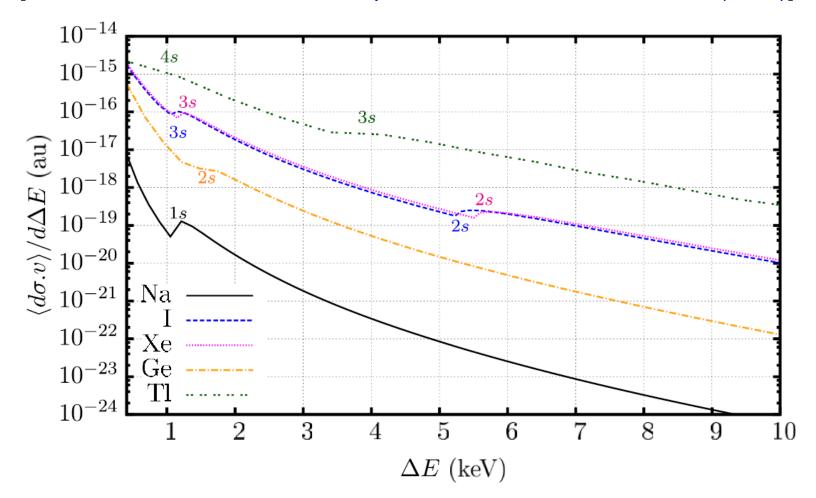
<u>Relativistic [$s_{1/2}$, $p_{1/2}$ -wave, $\psi \propto r^{\gamma-1}$ as $r \rightarrow 0$, $\gamma^2 = 1 - (Z\alpha)^2$]*:</u>


 $d\sigma_{\chi e} \propto 1/q^{6-2(Z\alpha)^2}$ ($d\sigma_{\chi e} \propto 1/q^{5.7}$ for Xe and I)

Relativistic contribution to σ_{χe} dominates by several orders of magnitude for large *q*!

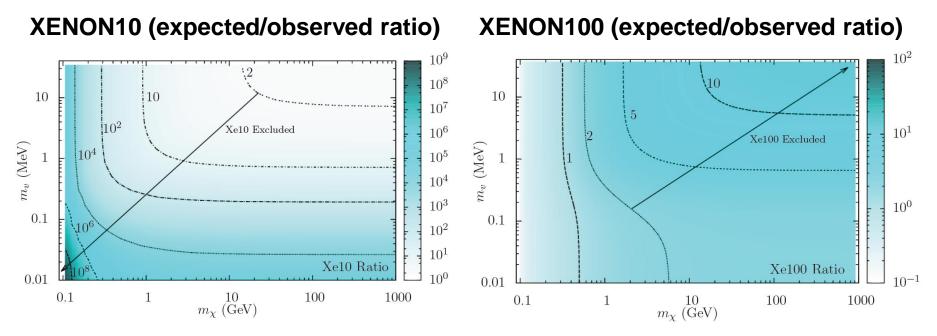
* We present the leading atomic-structure contribution to the cross-sections here

Why are electron relativistic effects so important?


[Roberts, Flambaum, Gribakin, *PRL* **116**, 023201 (2016)], [Roberts, Dzuba, Flambaum, Pospelov, Stadnik, *PRD* **93**, 115037 (2016)]

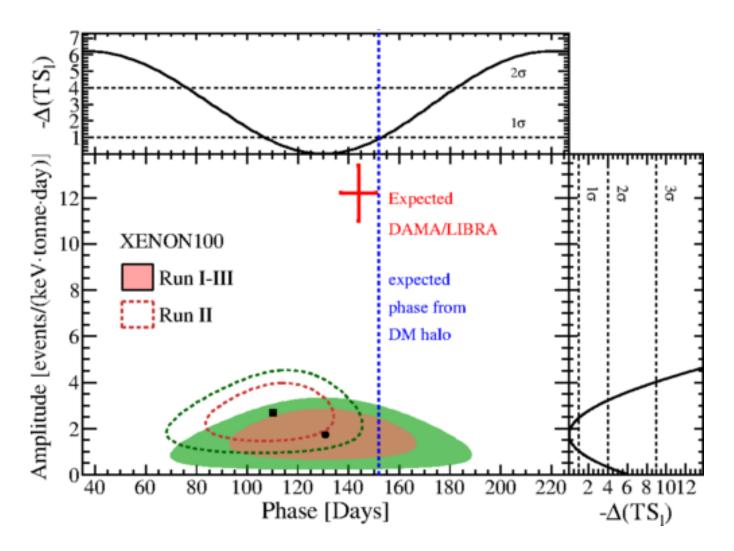
Calculated atomic-structure functions for ionisation of I from 3*s* atomic orbital as a function of q; $\Delta E = 4$ keV, vector interaction portal

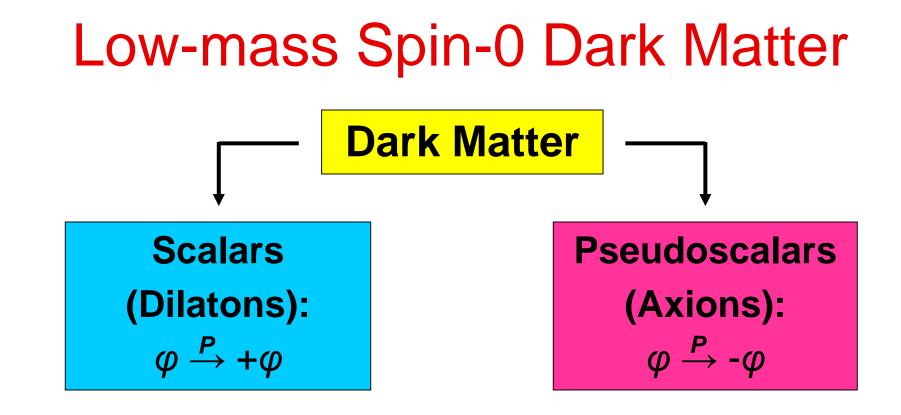
Accurate relativistic atomic calculations


[Roberts, Flambaum, Gribakin, *PRL* **116**, 023201 (2016)], [Roberts, Dzuba, Flambaum, Pospelov, Stadnik, *PRD* **93**, 115037 (2016)]

Calculated differential $\sigma_{\chi e}$ as a function of total energy deposition (ΔE); $m_{\chi} = 10 \text{ GeV}, m_{V} = 10 \text{ MeV}, \alpha_{\chi} = 1$, vector interaction portal

Can the DAMA result be explained by the ionising scattering of WIMPs on electrons?


[Roberts, Flambaum, Gribakin, *PRL* **116**, 023201 (2016)], [Roberts, Dzuba, Flambaum, Pospelov, Stadnik, *PRD* **93**, 115037 (2016)]



Using results of XENON10 and XENON100, we find no region of parameter space in m_x and m_v that is consistent with interpretation of DAMA result in terms of "ionising scattering on electrons" scenario.

Can the DAMA result be explained by the ionising scattering of WIMPs on electrons?

[XENON collaboration, PRL 118, 101101 (2017)]

→ Time-varying fundamental constants

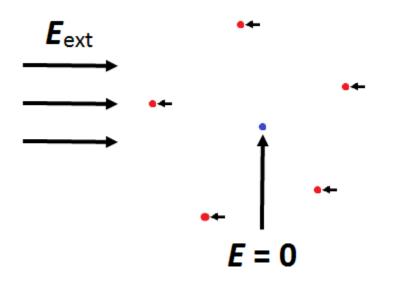
→ Time-varying spindependent effects

1000-fold improvement

Axion-Induced Oscillating Neutron EDM

[Crewther, Di Vecchia, Veneziano, Witten, *PLB* **88**, 123 (1979)], [Pospelov, Ritz, *PRL* **83**, 2526 (1999)], [Graham, Rajendran, *PRD* **84**, 055013 (2011)]

$$\mathcal{L}_{aGG} = \frac{C_G a_0 \cos(m_a t)}{f_a} \frac{g^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \implies d_n(t) \propto \cos(m_a t)$$

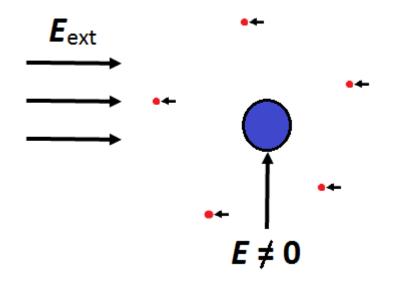

$$q_{\pi NN} = 13.5 \xrightarrow{\gamma} \qquad n$$

$$g_{\pi NN} \approx 0.016 C_G a_0 \cos(m_a t) / f_a$$

Schiff's Theorem

[Schiff, Phys. Rev. 132, 2194 (1963)]

Schiff's Theorem: "In a neutral atom made up of point-like nonrelativistic charged particles (interacting only electrostatically), the constituent EDMs are screened from an external electric field."



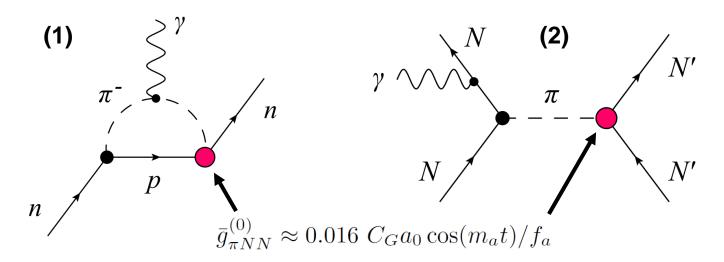
Classical explanation for nuclear EDM: A neutral atom does not accelerate in an external electric field!

Lifting of Schiff's Theorem

[Sandars, *PRL* **19**, 1396 (1967)], [O. Sushkov, Flambaum, Khriplovich, *JETP* **60**, 873 (1984)]

In real (heavy) atoms: Incomplete screening of external electric field due to finite nuclear size, parametrised by *nuclear Schiff moment*.

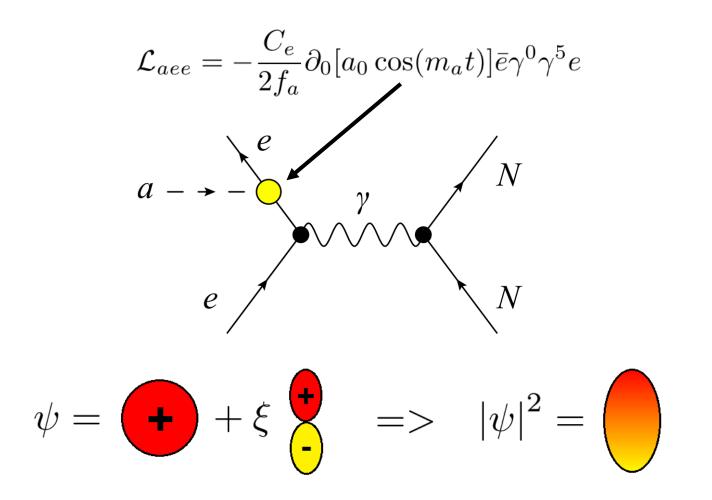
Axion-Induced Oscillating Atomic and Molecular EDMs


[O. Sushkov, Flambaum, Khriplovich, *JETP* **60**, 873 (1984)], [Stadnik, Flambaum, *PRD* **89**, 043522 (2014)]

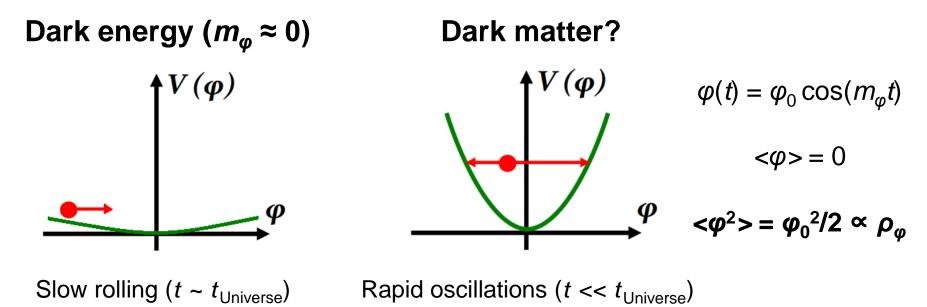
Induced through *hadronic mechanisms*:

- Oscillating nuclear Schiff moments ($I \ge 1/2 \Rightarrow J \ge 0$)
- Oscillating nuclear magnetic quadrupole moments (*I* ≥ 1 => *J* ≥ 1/2; *magnetic* => no Schiff screening)

Underlying mechanisms:


- (1) Intrinsic oscillating nucleon EDMs (1-loop level)
- (2) Oscillating *P*, *T*-violating intranuclear forces (*tree level* => **larger by** $\sim 4\pi^2 \approx 40$; up to **extra 1000-fold enhancement** in deformed nuclei)

Axion-Induced Oscillating Atomic and Molecular EDMs


[Stadnik, Flambaum, *PRD* **89**, 043522 (2014)], [Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, *PRL* **113**, 081601 (2014); *PRD* **90**, 096005 (2014)]

Also induced through *non-hadronic mechanisms* for $J \ge 1/2$ atoms, via mixing of opposite-parity atomic states.

Cosmological Evolution of the Fundamental 'Constants'

- Dirac's large numbers hypothesis: $G \propto 1/t$
- Fundamental constants not predicted from theory, but determined from measurements (local not universal)
- Possible models for cosmological evolution of fundamental constants?

Dark Matter-Induced Cosmological **Evolution of the Fundamental Constants** [Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)] Consider *quadratic couplings* of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m_{\varphi} t)$, with SM fields. $\mathcal{L}_f = -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f \quad \text{c.f.} \quad \mathcal{L}_f^{\text{SM}} = -m_f \bar{f} f \quad => \quad m_f \to m_f \left| 1 + \frac{\phi^2}{(\Lambda'_f)^2} \right|$ $=>\frac{\delta m_f}{m_f} = \frac{\phi_0^2}{(\Lambda'_f)^2}\cos^2(m_\phi t) = \left|\frac{\phi_0^2}{2(\Lambda'_f)^2}\right| + \left|\frac{\phi_0^2}{2(\Lambda'_f)^2}\cos(2m_\phi t)\right|$ 'Slow' drifts [Astrophysics **Oscillating variations** (high ρ_{DM}): BBN, CMB] [Laboratory (high precision)]

BBN Constraints on 'Slow' Drifts in Fundamental Constants due to Dark Matter [Stadnik, Flambaum, PRL 115, 201301 (2015)]

- Largest effects of DM in early Universe (highest $\rho_{\rm DM}$)
- Big Bang nucleosynthesis ($t_{weak} \approx 1s t_{BBN} \approx 3 min$)
- Primordial ⁴He abundance sensitive to *n/p* ratio (almost all neutrons bound in ⁴He after BBN)

$$\frac{\Delta Y_p(^{4}\text{He})}{Y_p(^{4}\text{He})} \approx \frac{\Delta (n/p)_{\text{weak}}}{(n/p)_{\text{weak}}} - \Delta \left[\int_{t_{\text{weak}}}^{t_{\text{BBN}}} \Gamma_n(t) dt \right]$$

$$p + e^- \rightleftharpoons n + \nu_e$$

$$n + e^+ \rightleftharpoons p + \bar{\nu}_e$$

$$n \to p + e^- + \bar{\nu}_e$$

Atomic Spectroscopy Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

$$\frac{\delta\left(\omega_{1}/\omega_{2}\right)}{\omega_{1}/\omega_{2}} \propto \sum_{X} \left(K_{X,1} - K_{X,2}\right) \cos\left(\omega t\right)$$

 $\omega = m_{\varphi}$ (linear coupling) or $\omega = 2m_{\varphi}$ (quadratic coupling)

- Precision of optical clocks approaching ~10⁻¹⁸ fractional level
- Sensitivity coefficients K_X calculated extensively by Flambaum group and co-workers (1998 – present)

Dy/Cs: [Van Tilburg *et al.*, *PRL* **115**, 011802 (2015)], [Stadnik, Flambaum, *PRL* **115**, 201301 (2015)] <u>Rb/Cs:</u> [Hees *et al.*, *PRL* **117**, 061301 (2016)], [Stadnik, Flambaum, *PRA* **94**, 022111 (2016)]

Effects of Varying Fundamental Constants on Atomic Transitions

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$\omega_{\text{opt}} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\text{rel}}^{\text{opt}}(Z\alpha)$$

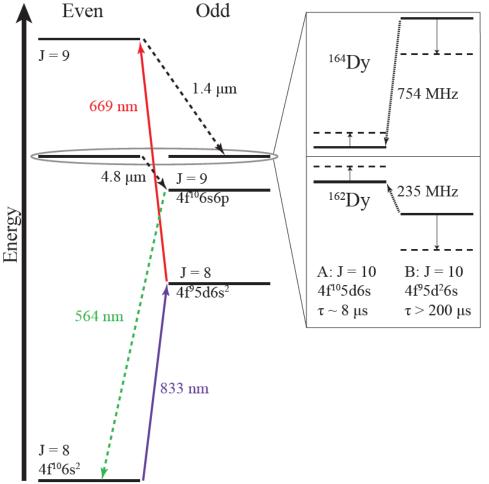
 $K_{\alpha}(\text{Sr}) = 0.06, \ K_{\alpha}(\text{Yb}) = 0.3, \ K_{\alpha}(\text{Hg}) = 0.8$

Increasing Z

• Atomic hyperfine transitions:

$$\omega_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu \longleftarrow K_{m_q} \neq 0$$

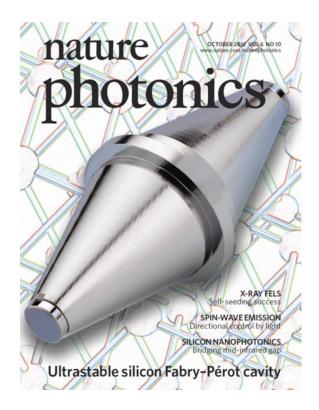
Increasing Z


 $K_{\alpha}(^{1}\text{H}) = 2.0, \ K_{\alpha}(^{87}\text{Rb}) = 2.3, \ K_{\alpha}(^{133}\text{Cs}) = 2.8$

$$K_{m_e/m_N} = 1$$

Enhanced Effects of Varying Fundamental Constants on Atomic Transitions

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); Flambaum, *PRL* **97**, 092502 (2006); *PRA* **73**, 034101 (2006); Berengut, Dzuba, Flambaum, *PRL* **105**, 120801 (2010)]


- Sensitivity coefficients may be greatly enhanced for transitions between nearly degenerate levels:
 - Atoms (e.g., $|K_{\alpha}(Dy)| \sim 10^6 - 10^7)$
 - Molecules
 - Highly-charged ions
 - Nuclei

Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter [Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRA* **93**, 063630 (2016)]

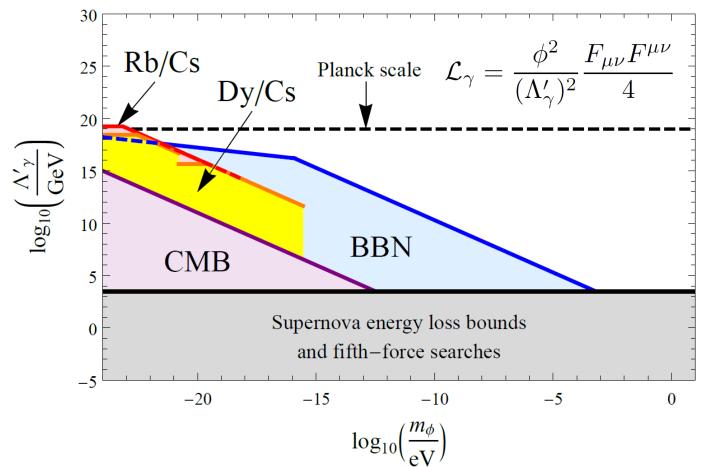
Gravitational-wave detector (LIGO/Virgo), L ~ 4 km

Small-scale cavity, L ~ 0.2 m Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter [Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRA* **93**, 063630 (2016)]

• Compare $L \sim Na_{\rm B}$ with λ

$$\Phi = \frac{\omega L}{c} \propto \left(\frac{e^2}{a_{\rm B}\hbar}\right) \left(\frac{Na_{\rm B}}{c}\right) = N\alpha \implies \frac{\delta\Phi}{\Phi} \approx \frac{\delta\alpha}{\alpha}$$

 Multiple reflections of light beam enhance effect (N_{eff} ~ 10⁵ in small-scale interferometers with highly reflective mirrors)

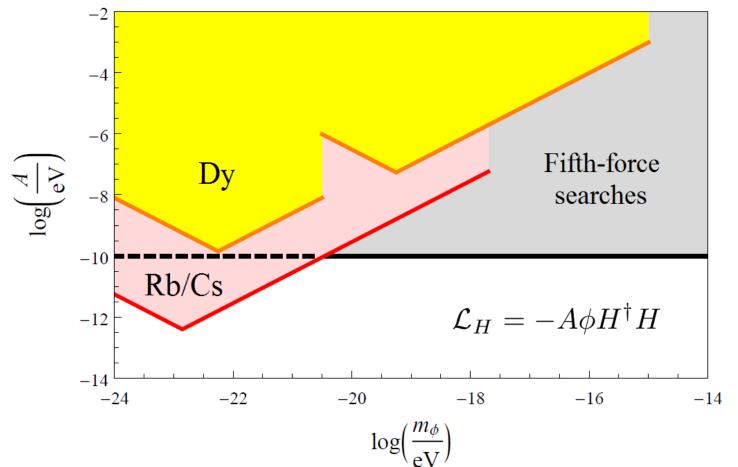

Sr/Cavity (Domain wall DM): [Wcislo et al., Nature Astronomy 1, 0009 (2016)]

Constraints on Quadratic Interaction of Scalar Dark Matter with the Photon

BBN, CMB, Dy/Cs and Rb/Cs constraints:

[Stadnik, Flambaum, PRL 115, 201301 (2015); PRA 94, 022111 (2016)]

15 orders of magnitude improvement!



Constraints on Linear Interaction of Scalar Dark Matter with the Higgs Boson

Rb/Cs constraints:

[Stadnik, Flambaum, PRA 94, 022111 (2016)]

2 – 3 orders of magnitude improvement!

Non-Cosmological Sources of Exotic Bosons

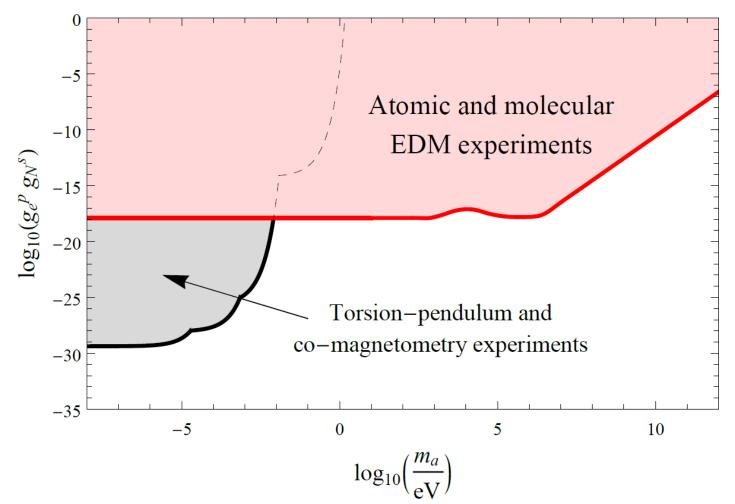
[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]

$$\mathcal{L}_{int} = a\bar{f}\left(g_{f}^{s} + ig_{f}^{p}\gamma_{5}\right)f$$

$$\downarrow a$$

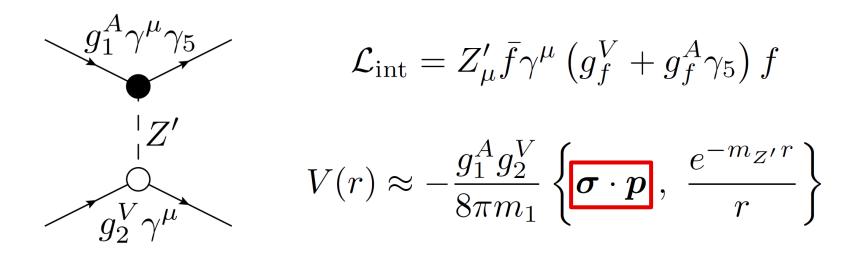
$$\downarrow a$$

$$V(r) \approx \frac{g_{1}^{p}g_{2}^{s}}{8\pi m_{1}}\boldsymbol{\sigma}\cdot\boldsymbol{\hat{r}}\left(\frac{m_{a}}{r} + \frac{1}{r^{2}}\right)e^{-m_{a}r}$$


P,*T*-violating forces => Atomic and Molecular EDMs

Atomic EDM experiments: Cs, Tl, Xe, **Hg** Molecular EDM experiments: YbF, **HfF+**, **ThO**

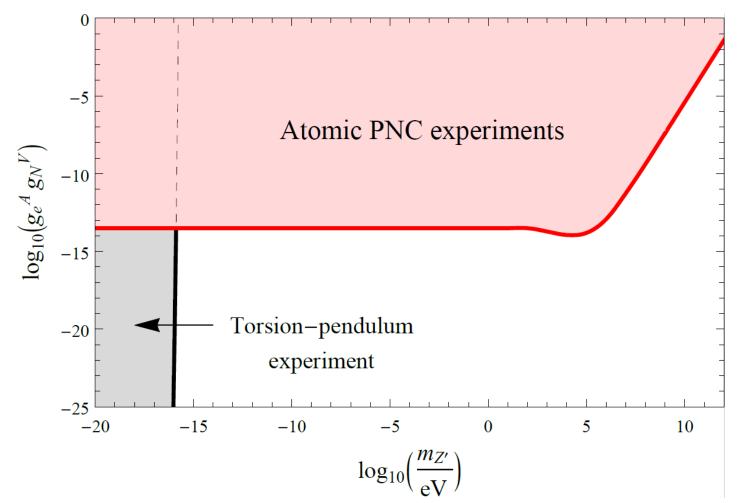
Constraints on Scalar-Pseudoscalar Nucleon-Electron Interaction


EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)]

Many orders of magnitude improvement!

Non-Cosmological Sources of Exotic Bosons

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]


P-violating forces => Atomic parity-nonconserving effects and nuclear anapole moments

Atomic PNC experiments: Cs, Yb, TI

Constraints on Vector-Pseudovector Nucleon-Electron Interaction

PNC constraints: [Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]

Many orders of magnitude improvement!

