Dark Matter and QCD-Charged Mediators in the Quasi-Degenerate Regime

Patrick Stengel

Stockholm University

February 22, 2018

1707.02460 with Andrew Davidson, Chris Kelso, Jason Kumar and Pearl Sandick Introduction

Squark mass limits from jets + MET searches

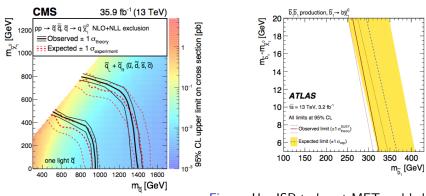
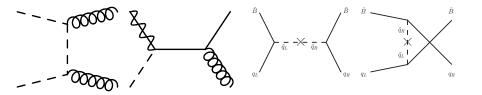


Figure: Simplified models only i considering production of light flavor squark pairs, see *CMS* 1704.07781

Figure: Use ISR to boost MET and help identify signal events, *ATLAS 1604.07773*


Resurrect "bulk" region by relaxing MFV, allowing light \tilde{f}

Light flavor squark co-annihilation

- pure B̃ need sfermions with L-R mixing, nondegenerate masses for s-wave annihilation
- LHC less sensitive for $m_{\chi} \simeq m_{\tilde{q}} \gtrsim \mathcal{O}(400 \, {
 m GeV})$
- need $\tilde{q}^*\tilde{q}
 ightarrow gg$, $\chi \tilde{q}
 ightarrow gq$

Scattering through squark exchange

- enhanced scattering cross section for $m_\chi \simeq m_{ ilde q}$
- need small mixing angle for consistency with SI limits
- dim-8/spin-dependent operators can dominate

Relic density

"Simplified" model with singlet DM, squark mediator(s)

$$\mathcal{L}_{int} = \sum_{q=u,d,s} \lambda_{Lq} (\bar{\chi} P_L q) \tilde{q}_L^* + \lambda_{Rq} (\bar{\chi} P_R q) \tilde{q}_R^* + h.c.$$
$$\tilde{q}_L = \tilde{q}_1 \cos \alpha + \tilde{q}_2 \sin \alpha$$
$$\tilde{q}_R = -\tilde{q}_1 \sin \alpha + \tilde{q}_2 \cos \alpha$$

Gauge invariance requires squark couplings to SM gauge bosons

$$\langle \sigma v(\tilde{q}^*\tilde{q} \to gg) \rangle = \frac{7g_s^4 N_{\tilde{q}}}{432\pi m_{\tilde{q}}^2} \left[N_{\tilde{q}} + \frac{\exp\left(\Delta m/T\right)}{3\left(1 + \Delta m/m_{\chi}\right)^{3/2}} \right]^{-2}$$

• For small $\Delta m = m_{\tilde{q}} - m_{\chi}$, QCD processes dominate annihilation

- Temperature at freeze out $T \simeq m_{\chi}/25$ for correct relic density
- Sum over $N_{\tilde{q}}$ mass degenerate light flavor squarks species

Relic density

Co-annihilation processes needed to deplete relic desity

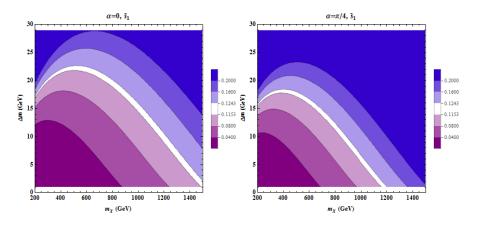


Figure: Relic density contours for benchmarks with a light d/s-type squark.

Light flavor squark co-annihilation

Relic density

Adding squarks can raise or lower *effective* $\langle \sigma v \rangle$

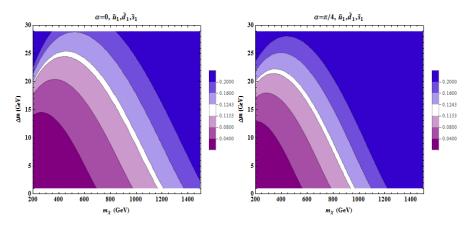


Figure: Relic density contours for benchmarks with light *u*-, *d*- and *s*-type squarks.

Direct detection

Relevant operators for squark exchange with $m_{\tilde{q}_1} \ll m_{\tilde{q}_2}$

$$\mathcal{O}_{q1} = \alpha_{q1}(\bar{\chi}\gamma^{\mu}\gamma^{5}\chi)(\bar{q}\gamma_{\mu}q)$$

$$\mathcal{O}_{a2} = \alpha_{a2}(\bar{\chi}\gamma^{\mu}\gamma^{5}\chi)(\bar{q}\gamma_{\mu}\gamma^{5}q)$$

$$\mathcal{O}_{q2} = \alpha_{q2}(\bar{\chi}\gamma^{\mu}\gamma^{5}\chi)(\bar{q}\gamma_{\mu}\gamma^{5}\chi)$$

$$\mathcal{O}_{q3} = \alpha_{q3}(\bar{\chi}\chi)(\bar{q}q)$$

$$\mathcal{O}_{qT2} = \alpha_{qT2} (i \bar{\chi} \gamma_{\mu} \partial_{\nu} \chi) \mathcal{O}_{q}^{(2)\mu\nu}$$

Scattering enhanced $m_{\chi} \simeq m_{\tilde{g}_1}$

- $\mathcal{O}_{a1^*,3,T2}$ spin independent
- \mathcal{O}_{a2} spin dependent
- $\mathcal{O}_{a2.3,T2}$ velocity independent

$$\begin{aligned} \alpha_{q1,2} &= \mp \left[\frac{|\lambda_L^2|}{8} \left(\frac{\cos^2 \alpha}{m_{\tilde{q}_1}^2 - m_{\chi}^2} \right) + \frac{|\lambda_R^2|}{8} \left(\frac{\sin^2 \alpha}{m_{\tilde{q}_1}^2 - m_{\chi}^2} \right) \right] \\ \alpha_{q3} &= \frac{Re(\lambda_L \lambda_R^*)}{4} (\cos \alpha \sin \alpha) \left[\frac{1}{m_{\tilde{q}_1}^2 - m_{\chi}^2} \right] \\ \alpha_{qT2} &= \frac{|\lambda_L^2|}{4} \left(\frac{\cos^2 \alpha}{(m_{\tilde{q}_1}^2 - m_{\chi}^2)^2} \right) + \frac{|\lambda_R^2|}{4} \left(\frac{\sin^2 \alpha}{(m_{\tilde{q}_1}^2 - m_{\chi}^2)^2} \right) \end{aligned}$$

Light flavor squark co-annihilation D

Direct detection

\mathcal{O}_{q3} (\mathcal{O}_{qT2}) dominates in Xenon at large (small) mixing

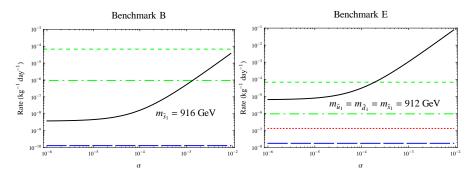


Figure: Event rate in Xenon-based detector as a function of α for \mathcal{O}_{q1} , \mathcal{O}_{q2} , $\mathcal{O}_{q3} + \mathcal{O}_{qT2}$, $m_{\chi} = 900 \,\text{GeV}$. Also show limits from XENON1T (dashed) and projections from LZ-7 (dash-dotted).

Light flavor squark co-annihilation

Direct detection

Projected sensitivity of direct detection at LZ-7

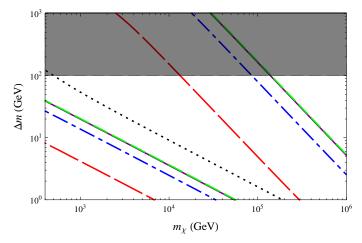


Figure: Projected LZ-7 sensitivity for benchmarks $\tilde{u}_1, \tilde{s}_1, \tilde{u}_1 \tilde{d}_1 \tilde{s}_1, \tilde{u}_1 \tilde{u}_2$.

Constraints applied to new MSSM paradigm

Light squark co-annihilation	Slepton mediators		
• need $\tilde{q}\chi$ and $\tilde{q}\tilde{q}$ inital states to deplete relic density	• for more "Incredible Bulk", see 1406.4903		
 small mixing angle requires more general treatment of direct detection 	 can look for compressed sleptons at LHC, 1706.05339 can probe full parameter space 		
• dim-8 or SD operators can dominate scattering at small α	at ILC, coming soon • direct (1608.00642), indirect		
 can probe squark masses higher than accessible at LHC 	(1605.03224) detection		

Thank you!

Figure: See 1411.2634

LSP is a natural WIMP candidate in the MSSM

R-parity suppresses proton decay

- $R = (-1)^{3B+L+2s}$
- Provides stable WIMP candidate

Neutralino in MSSM

- Mixture of neutral gauginos and higgsinos
- SM interactions depend on specific model
- mSUGRA tightly constrained

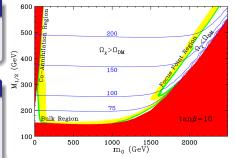
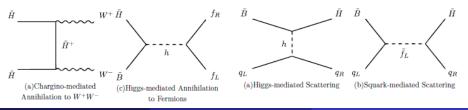


Figure: Cosmologically preferred mSUGRA regions are in green with $A_0 = 0$ and $\mu > 0$. Blue contours denote neutralino masses, see *Feng 1003.0904*.


Typical mSUGRA/CMSSM scenario with \tilde{B} - \tilde{H} admixture

Relic density with $\bar{\chi}\chi \rightarrow WW, ff$

- Assuming gaugino mass unification (at least $M_1 \lesssim M_2$), yields neutralino with small \widetilde{W}
- Minimal flavor violation eliminates sfermion mixing
- Need $\mu/m_{\chi}\sim \mathcal{O}(1)$ for *s*-wave see e.g. Feng, Sanford 1009.3934

SI scattering with Higgs exchange

- Scalar mediated interactions are velocity independent
- Minimal flavor violation guarantees coupling $\sim m_q$
- LHC data and $m_h \simeq 125 \, {\rm GeV}$ push unified $m_{\tilde{f}} \gtrsim \mathcal{O}(\, {\rm TeV})$ see e.g. Baer et. al. 1112.3017

Patrick Stengel (Stockholm University)

Relic density for \tilde{u}_1

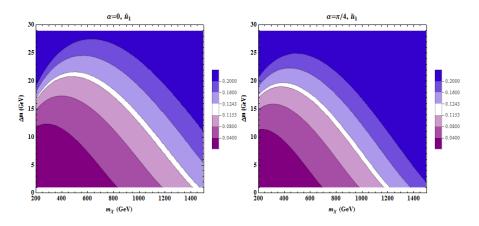


Figure: Relic density contours for benchmarks with light *u*-type squarks.

Relic density for $\tilde{u}_1 \tilde{d}_1$

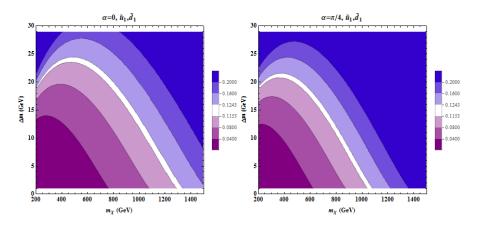


Figure: Relic density contours for benchmarks with light *u*- and *d*-type squarks.

Relic density for $\tilde{u}_1 \tilde{u}_2$

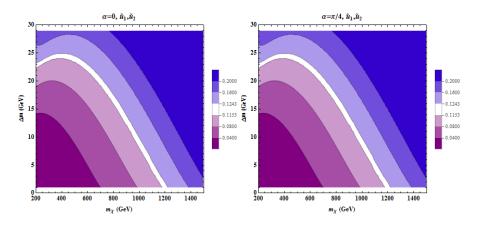


Figure: Relic density contours for benchmarks with two light *u*-type squarks.

\tilde{u}_1 and $\tilde{u}_1\tilde{u}_2$ in Xenon

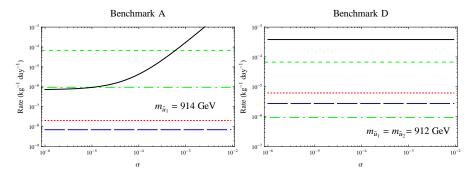


Figure: Event rate in Xenon-based detector as a function of α for \mathcal{O}_{q1} , \mathcal{O}_{q2} , $\mathcal{O}_{q3} + \mathcal{O}_{qT2}$, $m_{\chi} = 900 \,\text{GeV}$. Also show limits from XENON1T (dashed) and projections from LZ-7 (dash-dotted).

\tilde{s}_1 and $\tilde{u}_1 \tilde{d}_1 \tilde{s}_1$ in Fluorine

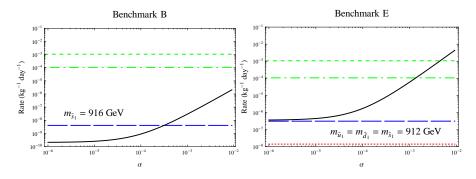


Figure: Event rate in Fluorine-based detector as a function of α for \mathcal{O}_{q1} , \mathcal{O}_{q2} , $\mathcal{O}_{q3} + \mathcal{O}_{qT2}$, $m_{\chi} = 900 \,\text{GeV}$. Also show limits from PICO-60L (dashed) and projections from PICO-250L (dash-dotted).

\tilde{u}_1 and $\tilde{u}_1\tilde{u}_2$ in Fluorine

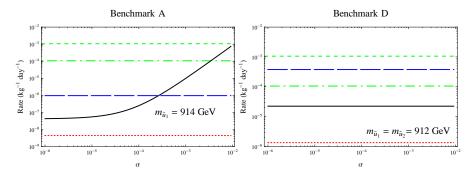


Figure: Event rate in Fluorine-based detector as a function of α for \mathcal{O}_{q1} , \mathcal{O}_{q2} , $\mathcal{O}_{q3} + \mathcal{O}_{qT2}$, $m_{\chi} = 900 \,\text{GeV}$. Also show limits from PICO-60L (dashed) and projections from PICO-250L (dash-dotted).

Current sensitivity of direct detection at XENON1T

XENON1T

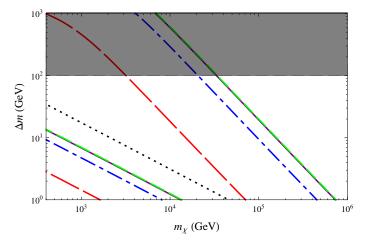


Figure: Current XENON1T sensitivity for benchmarks $\tilde{u}_1, \tilde{s}_1, \tilde{u}_1 \tilde{d}_1 \tilde{s}_1, \tilde{u}_1 \tilde{u}_2$.

Projected sensitivity of direct detection at PICO-250

PICO-250

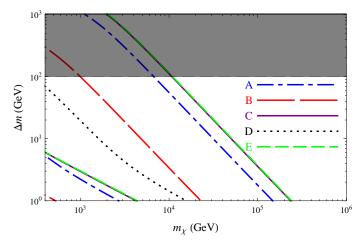


Figure: Projected PICO-250 sensitivity for benchmarks $\tilde{u}_1, \tilde{s}_1, \tilde{u}_1\tilde{d}_1\tilde{s}_1, \tilde{u}_1\tilde{u}_2$.

Current sensitivity of direct detection at PICO-60

PICO-60

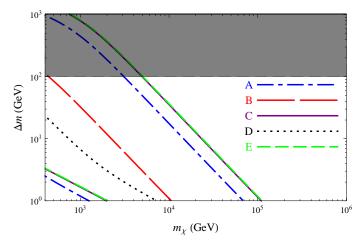


Figure: Current PICO-60 sensitivity for benchmarks $\tilde{u}_1, \tilde{s}_1, \tilde{u}_1 \tilde{d}_1 \tilde{s}_1, \tilde{u}_1 \tilde{u}_2$.

Can also satisfy relic density with L-R slepton mixing

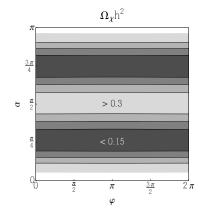
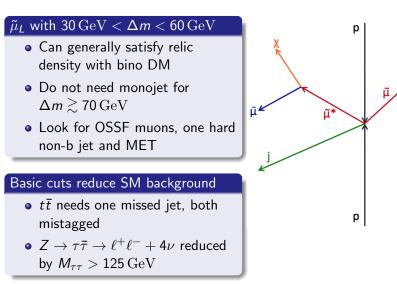
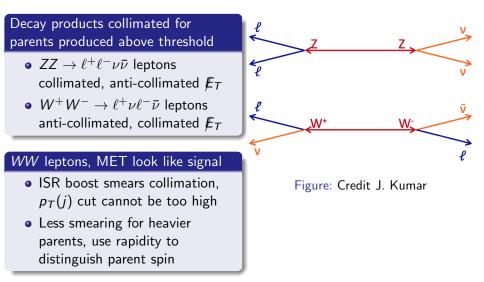


Figure: Bino relic abundance assuming smuon mixing with $m_{\chi} = 100 \text{ GeV}$, $m_{\tilde{\mu}_1} = 120 \text{ GeV}$ and $m_{\tilde{\mu}_2} = 300 \text{ GeV}$.


$$\begin{aligned} \mathcal{L}_{int} &= \lambda_L \tilde{\ell}_L \bar{\chi} P_L \ell + \lambda_R \tilde{\ell}_R \bar{\chi} P_R \ell \\ &+ \lambda_L^* \tilde{\ell}_L^* \bar{\chi} P_L I + \lambda_R^* \tilde{\ell}_R^* \bar{\chi} P_R \ell \\ \lambda_L &= \sqrt{2} g Y_L e^{i\phi/2} \\ \lambda_R &= \sqrt{2} g Y_R e^{-i\phi/2} \\ \begin{bmatrix} \tilde{\ell}_1 \\ \tilde{\ell}_2 \end{bmatrix} &= \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \tilde{\ell}_L \\ \tilde{\ell}_R \end{bmatrix} \end{aligned}$$

L-R mixing angle $\alpha,$ CP-violating phase ϕ


Dipole moments constrain mixing

Rule out \tilde{e} , constrain $\tilde{\mu}$, allow $\tilde{\tau}$

Can use ISR to boost MET and help S-B discrimination

Angular variables can help reduce remaining backgrounds

For $p_T(\ell) \ll p_T(j)$, signal MET balanced by $p_T(j)$

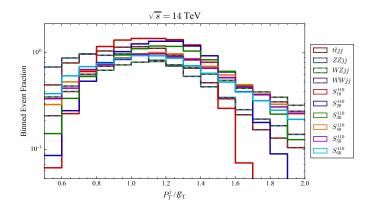


Figure: $1.0 < p_T(j)/\not\!\!\!\!/ E_T < 1.3$ cut for smaller mass differences

$ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ has leptons recoiling against MET

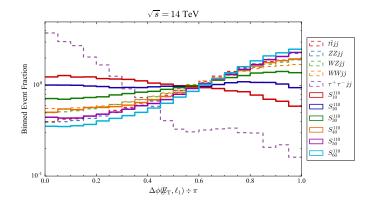


Figure: $\Delta \phi(\not\!\!\!E_T, \ell_1) < 0.6\pi$ helps for intermediate mass differences

$W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$ has less anti-collimated leptons

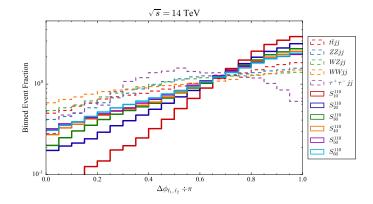


Figure: $\Delta \phi(\ell_1, \ell_2) > 0.5\pi$ suppresses background with lighter parents

$\cos heta^*_{\ell_1,\ell_2} = anh(\Delta \eta_{\ell_1,\ell_2}/2)$ depends on parents' spin

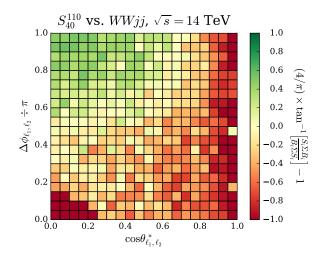
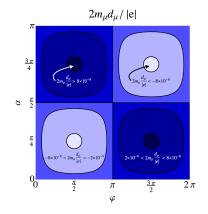



Figure: $\cos heta_{\ell_1,\ell_2}^* < 0.5\pi$ suppresses background with spin-1 parents

Dipole moment contributions from L-R slepton mixing

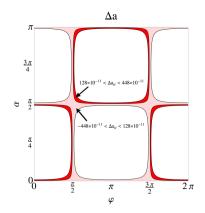
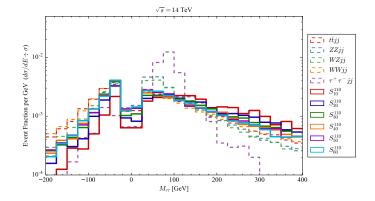
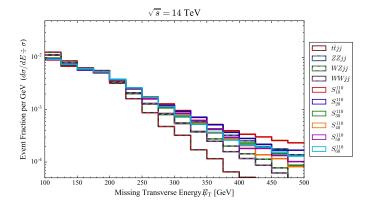
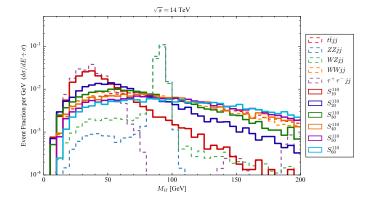
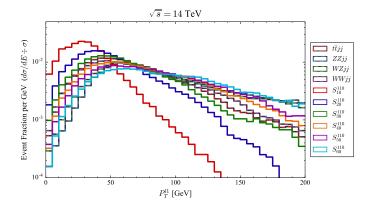
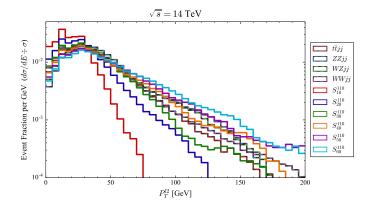




Figure: Muon electric dipole moment contribution assuming smuon mixing with $m_X = 100 \text{ GeV}$, $m_{\tilde{\mu}_1} = 120 \text{ GeV}$ and $m_{\tilde{\mu}_2} = 300 \text{ GeV}$. All unconstrained.


Figure: Muon magnetic dipole moment contribution either fully accounting for measured value (red) or only similar in magnitude (pink).


MET cut helps $t\bar{t}$ background


Window cut on $m_{\ell\ell}$ around m_Z

Leading lepton p_T

Subleading lepton p_T

Primary and secondary cuts

Selection	ZZjj	WZjj	WWjj	S_{30}^{110}	S_{40}^{110}	S_{50}^{110}
Matched Production	$1.3 imes 10^4$	$4.2 imes 10^4$	$9.5 imes10^4$	$1.9 imes 10^2$	$1.9 imes 10^2$	$1.9 imes 10^2$
τ -veto	$1.2 imes 10^4$	$4.0 imes 10^4$	$8.9 imes 10^4$	$1.9 imes10^2$	$1.9 imes 10^2$	$1.9 imes 10^2$
OSSF muon	3.2×10^2	$5.8 imes 10^2$	$5.1 imes 10^2$	$8.1 imes 10^1$	$8.8 imes 10^1$	$8.9 imes 10^1$
only 1J $P_T > 30$	$9.4 imes 10^1$	$1.5 imes 10^2$	1.1×10^{2}	$1.6 imes 10^1$	$1.7 imes 10^1$	$1.7 imes 10^1$
Jet <i>b</i> -veto	$8.0 imes 10^1$	$1.4 imes 10^2$	1.1×10^{2}	$1.6 imes 10^1$	$1.7 imes 10^1$	$1.7 imes 10^1$
$\not\!$	$4.3 imes 10^0$	$7.8 imes10^{0}$	$1.7 imes 10^1$	$2.5 imes 10^{0}$	$3.4 imes 10^0$	$3.8 imes10^{0}$
Jet $P_T > 100 \text{ GeV}$	$1.4 imes 10^0$	$4.0 imes 10^0$	1.0×10^1	$1.8 imes 10^0$	$1.9 imes 10^0$	$1.8 imes 10^0$
$m_{\ell\ell} \notin M_Z \pm 10 \text{ GeV}$	$1.0 imes 10^{-1}$	$1.0 imes10^{0}$	$8.9 imes10^0$	$1.6 imes10^0$	$1.6 imes10^{0}$	$1.5 imes 10^0$
$m_{ au au}>175{ m GeV}$	2.0×10^{-2}	3.3×10^{-1}	$4.5 imes 10^{0}$	$9.3 imes 10^{-1}$	$9.3 imes 10^{-1}$	$9.3 imes10^{-1}$
$\not\!$	8.3×10^{-3}	9.9×10^{-2}	$1.3 imes 10^0$	3.5×10^{-1}	3.1×10^{-1}	3.2×10^{-1}
\int Jet $P_T > 175 \; \text{GeV}$	$6.6 imes 10^{-3}$	8.7×10^{-2}	1.2×10^{0}	3.3×10^{-1}	2.6×10^{-1}	$2.6 imes 10^{-1}$

Tertiary cuts targeted at larger mass gaps

Selection	ZZjj	WZjj	WWjj	S_{30}^{110}	S_{40}^{110}	S_{50}^{110}
$M_{T2}^{WW} < 1 \text{ GeV}$	3.9×10^{-3}	7.0×10^{-2}	8.6×10^{-1}	2.8×10^{-1}	2.1×10^{-1}	2.0×10^{-1}
$0.8 < P_T^j \div E_T < 1.8$	3.9×10^{-3}	5.6×10^{-2}	$7.5 imes 10^{-1}$	2.7×10^{-1}	$1.9 imes 10^{-1}$	1.7×10^{-1}
$\Delta \phi(\not\!$	3.9×10^{-3}	5.4×10^{-2}	7.2×10^{-1}	2.6×10^{-1}	$1.9 imes 10^{-1}$	1.6×10^{-1}
$\Delta \phi(\ell_1,\ell_2) \div \pi > 0.5$	2.7×10^{-3}	3.1×10^{-2}	$5.6 imes 10^{-1}$	2.0×10^{-1}	$1.6 imes 10^{-1}$	1.2×10^{-1}
$P_T^{\ell 2} > 40 \text{ GeV}$	0	1.1×10^{-2}	2.3×10^{-1}	9.4×10^{-2}	8.7×10^{-2}	8.4×10^{-2}
Events at $\mathcal{L} = 300 \; \mathrm{fb}^{-1}$	0.0	3.4	68.5	28.2	26.1	25.2
$S \div B$	-	-	-	0.34	0.31	0.30
$S \div \sqrt{B}$	-	-	-	3.1	2.9	2.8
Poisson Significance	-	-	-	3.2	3.0	2.9

Stable, thermally produced particle will freeze out with relic abundance

$$\Omega_X \sim 1/\langle \sigma_A v
angle$$

largely independent of DM mass, m_X

Assuming a weak coupling, dimensioanlly, the cross section

$$\langle \sigma_{\mathcal{A}} v
angle \sim rac{g_{weak}^4}{m_X^2} (1 \, \, or \, \, v^2)$$

 $m_X \sim m_{weak}$ will yield the correct Ω_{DM} for s- or p-wave annihilation

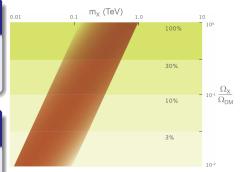


Figure: See Feng 1003.0904.

Weak scale DM motivated by new physics models

Stabilize gauge hierarchy problem \rightarrow new weak scale particles

- Lightest new particle protected by discreet symmetry
- Provides WIMP candidate

Neutralino in MSSM

- Mixture of neutral gauginos and higgsinos
- SM interactions depend on specific model
- mSUGRA tightly constrained

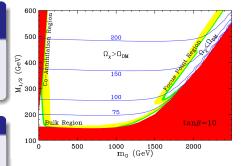


Figure: Cosmologically preferred mSUGRA regions are in green with $A_0 = 0$ and $\mu > 0$. Blue contours denote neutralino masses, see Feng 1003.0904.

MSSM parmeter space decouples into 3 sectors

- Heavy sector: Choose μ, heavy squark masses, and top trilinear couplings to obtain a SM Higgs. Decouple M₂, M₃ etc. to satisfy LHC.
- *Relic Density sector*: Choose slepton masses and mixings to achieve the dark matter relic abundance. Alternatively, the abundance may be achieved via coannihilations with squarks.
- Direct Detection sector: For a given bino mass, neutralino-nucleon elastic scattering cross sections are determined by the light squark masses and mixings.

PDF suppression of 2nd generation squark production

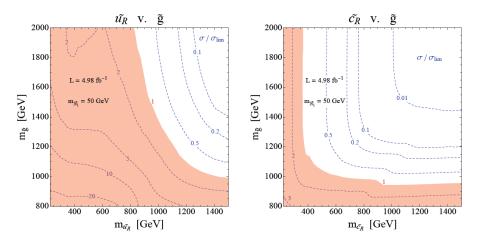


Figure: As $m_{\tilde{g}}$ falls, *t*-channel gluino exchange becomes important, see Mahbubani et. al. 1212.3328.

Scattering through scalar exchange in non-relativistic limit

$$\sigma_{SI}^{N} = \frac{\mu_{p}^{2}}{32\pi(2J_{X}+1)} \sum_{spins} \left| \sum_{q} \frac{B_{q}^{N}}{m_{X}m_{q}} \mathcal{M}_{Xq \to Xq} \right|^{2}$$

$$B_{q}^{N} = \langle N | \bar{q}q | N \rangle = m_{N} f_{q}^{N} / m_{q}$$

$$B_{u}^{p} = B_{d}^{n} = \tilde{\Sigma}_{\pi N} \left[1 + (1-y) \left(\frac{z-1}{z+1} \right) \right]$$

$$B_{d}^{p} = B_{u}^{n} = \tilde{\Sigma}_{\pi N} \left[1 - (1-y) \left(\frac{z-1}{z+1} \right) \right]$$

$$B_{s}^{p} = B_{s}^{n} = \tilde{\Sigma}_{\pi N} y, \quad \Sigma_{\pi N} = (m_{u} + m_{d}) \tilde{\Sigma}_{\pi N}$$

Largest uncertainty from strangeness content of nucleon $\mathbf{y} = 1 - \sigma_0 / \Sigma_{\pi N}$ $\Sigma_{\pi N} \sim 59 \,\text{MeV}$ can be determined from π -N scattering. $z \simeq 1.49$ and σ_0 can be fit from baryon octet mass differences in chiral pert. theory

Patrick Stengel (Stockholm University)

Can also calculate σ_0 on the lattice and predict small $\Sigma_{\pi N}$

	$y \rightarrow 0$	<i>y</i> = 0.06	y ightarrow 1
$B_u^p = B_d^n$	9.95 (7.59, 12.2)	9.85 (7.51, 12.1)	8.31 (6.34, 10.3)
$B_d^p = B_u^n$	6.67 (5.09, 8.38)	6.77 (5.17, 8.46)	8.31 (6.34, 10.3)
$B_s^{\tilde{p}} = B_s^n$	0	0.499 (0.380, 0.617)	8.31 (6.34, 10.3)

Table: Can end up with either small $\sigma_0 \lesssim \Sigma_{\pi N}$ or $\sigma_0 \sim \Sigma_{\pi N}$. We assume the central value for $\Sigma_{\pi N}$ of 59 MeV, with the numbers in parentheses indicating the 2σ range for $\Sigma_{\pi N}$ (45 MeV, 73 MeV), see Alarcon, Camalich, Oller 1110.3797.

$$B_{q=c,b,t}^{N} = rac{2}{27} rac{m_{N}}{m_{q}} f_{g}^{N}, \ f_{g}^{N} = 1 - \sum_{q=u,d,s} f_{q}^{N}$$

Quark loops could couple heavy flavor squarks to gluon content in nucleon Recall, for squark mixing, we have $\mathcal{M}_{Xq \to Xq} \sim m_q$, so q = c, b, tcontributions to σ_{SI}^N will be suppressed by m_q^{-2} without MFV couplings.

Patrick Stengel (Stockholm University)

Calculate cross section and check dipole moments

$$\sigma_{SI}^{N} = \frac{\mu_{\rho}^{2}}{4\pi} \left\{ \sum_{q} g^{2} Y_{L} Y_{Rq} \sin(2\phi_{\tilde{q}}) \left[\frac{1}{(m_{\tilde{q}_{1}}^{2} - m_{X}^{2})} - \frac{1}{(m_{\tilde{q}_{2}}^{2} - m_{X}^{2})} \right] B_{q}^{N} \lambda_{q} \right\}^{2}$$

where λ_q accounts for running from the weak scale. For $m_X \ll m_{\tilde{q}_1} \ll m_{\tilde{q}_2}$

$$\frac{\Delta a}{m_q} \sim \frac{m_X}{16\pi^2 m_{\tilde{q}_1}^2} g^2 Y_L Y_{Rq} \sin(2\phi_{\tilde{q}})$$

$$\sigma_{SI}^N \sim (1.1 \times 10^9 \text{ pb GeV}^2) \left(\sum_q \frac{\Delta a_q}{m_q} \frac{B_q^N}{0.5}\right)^2 \left(\frac{m_X}{50 \text{ GeV}}\right)^{-2}$$

Direct detection already rules out models with $\Delta a_q (\text{GeV}/m_q) \gtrsim 10^{-9}$

No contribution to quark EDM and quark MDM limits are relatively weak LEP constrains current quark moments by checking Γ_Z contributions and LHC constrains chromomagnetic moments; most stringent $\Delta a_q \lesssim 10^{-5}$

Patrick Stengel (Stockholm University)

Assume $m_X = 50$ GeV, maximal mixing and minimal B_s^N

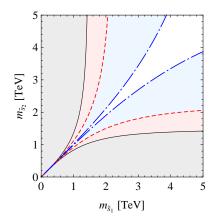


Figure: The grey region is ruled out by **LUX**, the red region could be ruled out by 300 days of LUX data and the blue region could be probed by LZ-7.

Direct detection with decoupled $m_{\tilde{s}_2}$ and minimal B_s^N

Figure: Sensitivity in the $(m_X, m_{\tilde{s}_1})$ plane assuming maximal mixing (left) and $(R_s^N, m_{\tilde{s}_1})$ plane with $R_q^N \equiv Y_{Rq}^2 \sin^2(2\phi_{\tilde{q}})(B_q^N)^2 \lambda_q^2$ and $m_X = 50$ GeV (right).

 $\sigma_{SI}^{N} \sim \frac{\mu_{p}^{2} R_{q}^{N}}{(m_{\tilde{q}_{1}}^{2} - m_{\chi}^{2})^{2}}$ • Enhanced sensitivity near $m_{\chi} \simeq m_{\tilde{q}_{1}}$ • Squark mass reach comperable to LHC

Patrick Stengel (Stockholm University)

Uncertainty in SI scattering due to strangeness content

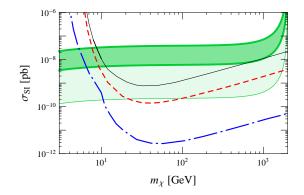


Figure: Sensitivity in the $(m_{\tilde{\chi}}, \sigma_{SI}^N)$ plane with with $m_{\tilde{s}_1} = 2$ TeV and maximal mixing. The dark green band indicates the predicted SI-scattering cross section for $\sigma_0 = 27$ MeV and allowing the full 2σ range for $\Sigma_{\pi N}$ of 45 MeV to 73 MeV.