Unified Halo-Independent Formalism for Direct Detection

Experiments

Samuel J. Witte IFIC, University of Valencia

Based on JCAP12(2017)039, in collaboration with G. Gelmini, J.H. Huh

Statistical Motivation

Statistics:

• Given a dataset, we are interested in the determining viability of models, preferred parameters of these models, making inferences about a model, etc.

Use of likelihood dependent on model parameters

$$\mathcal{L}(\vec{\Theta}) = P(\vec{y}|\vec{\Theta})$$
 $\vec{\Theta} = (x_1, x_2, \cdots, x_n)$

(model parameters)

But what happens if you model is a function of an infinite set of parameters?

Require simplifications, approximations, or tricks (or perhaps a very expensive computer and an apathetic attitude towards error)

Here, we study the case where observable is linear in unknown function

 $\mathcal{O} \propto f(x)$ infinite parameter space $f(x) = \sum_{i=-\infty}^{\infty} c_i \, \delta(x-x_i)$

Use tricks to show that, in parameter space of interest, f(x) takes on simplified form

Direct Detection Circa 2013

Various dark matter 'hints' juxtaposed against strong upper limits

- DAMA/LIBRA (~9 sigma annual modulation)
- CDMS-II-Si (~3 sigma scattering rate)
- CRESST (~4 sigma scattering rate)
- CoGeNT (~2 sigma annual modulation & scattering rate)

Viability of a given signal dependent upon various assumptions

$$\frac{dR}{dE_{\mathrm{R}}} = \frac{\rho_{\chi}C_T}{m_{\chi}m_T} \int_{v \ge v_{\min}(E_{\mathrm{R}})} d^3v f(\vec{v}, t) \, v \, \frac{d\sigma_T}{dE_{\mathrm{R}}}(E_{\mathrm{R}}, \vec{v})$$

Direct Detection Circa 2013

Various dark matter 'hints' juxtaposed against strong upper limits

- DAMA/LIBRA (~9 sigma annual modulation)
- CDMS-II-Si (~3 sigma scattering rate)
- CRESST (~4 sigma scattering rate)
- CoGeNT (~2 sigma annual modulation & scattering rate)

Viability of a given signal dependent upon various assumptions

$$\frac{dR}{dE_{\rm R}} = \underbrace{\frac{\rho_{\chi}C_T}{m_{\chi}m_T}}_{v \ge v_{\rm min}(E_{\rm R})} d^3v f(\vec{v}, t) v \frac{d\sigma_T}{dE_{\rm R}}(E_{\rm R}, \vec{v})$$

Astrophysics

- Local dark matter density
- Dark matter velocity distribution

Particle Physics

- SI, SD, Magnetic (Electric) Dipole, etc.
- Proton/neutron couplings
- Scattering kinematics

Astrophysical Uncertainties

Much of what we know comes from simulations

Most problematic when experiments probe the tail of the distribution

• E.g. light WIMPs, inelastic scattering, etc

$$\frac{dR}{dE_{\mathrm{R}}} = \frac{\rho_{\chi}C_T}{m_{\chi}m_T} \int_{v \ge v_{\mathrm{min}}(E_{\mathrm{R}})} d^3v f(\vec{v},t) \, v \, \frac{d\sigma_T}{dE_{\mathrm{R}}}(E_{\mathrm{R}},\vec{v})$$

Astrophysical Uncertainties

Experiments sensitive to $v > v_min(Target, DM mass)$

$$\frac{dR}{dE_{\rm R}} = \frac{\rho_{\chi}C_T}{m_{\chi}m_T} \int_{v \ge v_{\rm min}(E_{\rm R})} d^3v f(\vec{v}, t) \, v \, \frac{d\sigma_T}{dE_{\rm R}}(E_{\rm R}, \vec{v})$$

Considering different halo functions (i.e. f(v)) can alter the sensitivity of an experiment by orders of magnitude...

Astrophysical Uncertainties

Considering different halo functions (i.e. f(v)) can alter the sensitivity of an experiment by orders of magnitude...

Halo-Independent Analyses

Can we analyze direct detection data without making any assumptions on the underlying astrophysical distribution?

Halo-Independent Analyses

Can we analyze direct detection data without making any assumptions on the underlying astrophysical distribution?

Early Issues related to putative signals:

- Statistical interpretations often ambiguous (at best)
- Required unbinned measurements of data and background
- Could only be applied to time-averaged rate
 - (see Paolo Gondolo's Talk)

 $Rate = \int \tilde{\eta}(v) \mathcal{R}(v) dv$

New Halo-Independent Formalism (Derived from Convex Hulls)

<u>Goal:</u>

Develop a new halo-independent formalism that can be applied to any experiment/ dataset with a concrete and meaningful statistical interpretation

JCAP12(2017)039 Gelmini, Huh, SJW

New Halo-Independent Formalism (Derived from Convex Hulls)

<u>Goal:</u>

Develop a new halo-independent formalism that can be applied to any experiment/ dataset with a concrete and meaningful statistical interpretation

JCAP12(2017)039 Gelmini, Huh, SJW

(Frequentist method based on use of likelihood ratio)

 $\mathcal{L}(R_1, R_2, \cdots)$

e.g. R_1 is bin #1 (or experiment 1), and R_2 is bin #2 (or experiment 2)

Road Map:

- I. Prove all likelihoods are necessarily strictly convex functions of the predicted rate
 - Likelihood maximized by $\ \hat{ec{R}} = (\hat{R}_1, \hat{R}_2, \cdots, \hat{R}_\mathcal{N})$
- 2. Use theorems from convex geometry to argue that the set of rates that maximize the likelihood can always be obtained from very simple halo functions

• Either
$$f_G(\vec{u}) = \sum_{i=1}^{N} f_i \,\delta^3(\vec{u} - \vec{u}_i)$$
 or $F(v) = \sum_i^{N} F_i \,\delta(v - v_i)$

- 3. Use point (2) to reduce the infinite dimensionality problem
 - Construct halo-independent confidence bands

New Halo-Independent Formalism (Derived from Convex Hulls)

<u>Goal:</u>

Develop a new halo-independent formalism that can be applied to any experiment/ dataset with a concrete and meaningful statistical interpretation

JCAP12(2017)039 Gelmini, Huh, SJW

(Frequentist method based on use of likelihood ratio)

 $\mathcal{L}(R_1, R_2, \cdots)$

e.g. R_1 is bin #1 (or experiment 1), and R_2 is bin #2 (or experiment 2)

Road Map:

- I. Prove all likelihoods are necessarily strictly convex functions of the predicted rate
 - Likelihood maximized by $\ \hat{ec{R}} = (\hat{R}_1, \hat{R}_2, \cdots, \hat{R}_\mathcal{N})$

2. Use theorems from convex geometry to argue that the set of rates that maximize the likelihood can always be obtained from very simple halo functions

• Either
$$f_G(\vec{u}) = \sum_{i=1}^{N} f_i \,\delta^3(\vec{u} - \vec{u}_i)$$
 or $F(v) = \sum_i^{N} F_i \,\delta(v - v_i)$

- 3. Use point (2) to reduce the infinite dimensionality problem
 - Construct halo-independent confidence bands

Aside into Convex Geometry

Convex Set

Let \mathcal{A} be a convex set in a D-dimensional vector space.

For any collection of \vec{x}_i vectors in \mathcal{A} , and semi-positive definite coefficients $\lambda_i \le \lambda_i = 1$

Convex Hull

Given `generating set' *Y*, the convex hull is the minimal (unique) convex set containing *Y*

Generating Set

Caratheodory's Theorem (1907)

Lets say we have a convex hull in dimension D defined by generating set X Any element in the convex hull can be expressed as a convex combination of <u>at most</u> (D+1) generating vectors

Reminder: Convex combination implies coefficients are semi-positive definite and sum to 1

Caratheodory's Theorem (1907)

Lets say we have a convex hull in dimension D defined by generating set X Any element in the convex hull can be expressed as a convex combination of <u>at most</u> (D+1) generating vectors

Reminder: Convex combination implies coefficients are semi-positive definite and sum to 1

Fenchel-Eggleston Theorem (1953/58)

Consider Caratheodory's theorem, but in the limiting case where the generating set consists of at most D connected sets

Caratheodory's number is reduced from (D+1) to D

(Also developed additional proof to reduce this to D-1 for some cases)

Forming the Convex Hull

Define a convex hull all possible rate vectors using the infinite generating set:

$$\vec{R} = \mathcal{C} \int_0^\infty dv \frac{\vec{\mathcal{H}}(v)}{v} F(v) \to \sum_i \mathcal{C} \frac{\vec{\mathcal{H}}(v_i)}{v_i} F(v_i) dv_i$$

$$\hat{\mathbf{R}} = (\hat{R}_1, \hat{R}_2, \cdots, \hat{R}_N)$$

 $\left\{ \mathcal{C}\frac{\vec{\mathcal{H}}(v_i)}{v_i} \right\} \in \mathcal{A}$

Previous theorems guarantee:
$$\hat{\vec{R}} = \sum_{i} \lambda_i \times C \frac{\vec{\mathcal{H}}(v_i)}{v_i}$$
 with $\sum_{i} \lambda_i = 1$
Compare to: $\vec{R} = \sum_{i} C \frac{\vec{\mathcal{H}}(v_i)}{v_i} F(v_i) dv_i$ with $\forall v , F(v) \ge 0$ $\left(\sum_{i} dv_i F(v_i) = 1\right)$

Consequently:

$$F(v) = \sum_{i}^{\mathcal{N}} F_i \,\delta(v - v_i)$$

Successfully reduced parameter space to manageable size

February 22, 2018

February 22, 2018

Towards a Confidence Band

We have shown that the likelihood is always maximized by

But in statistics the best-fit is rather meaningless...

Conventional Neyman-Pearson Likelihood Ratio:

$$\lambda \equiv -2\ln\left[\frac{\mathcal{L}(x=x_0)}{\mathcal{L}(\hat{x})}\right]$$

 \mathcal{N}

 $f(x) = \sum_{i=1}^{n} c_i \,\delta(x - x_i)$

Again, working in infinite dimensional parameter space makes this impossible...

Towards a Confidence Band

We have shown that the likelihood is always maximized by

But in statistics the best-fit is rather meaningless...

Conventional Neyman-Pearson Likelihood Ratio:

$$\lambda \equiv -2\ln\left[\frac{\mathcal{L}(x=x_0)}{\mathcal{L}(\hat{x})}\right]$$

 $f(x) = \sum_{i=1}^{\infty} c_i \,\delta(x - x_i)$

Again, working in infinite dimensional parameter space makes this impossible...

New Question: Does there exist at least one halo function passing through (v, *eta*) *compatible at the desired CL?*

Towards a Confidence Band

We have shown that the likelihood is always maximized by

But in statistics the best-fit is rather meaningless...

Conventional Neyman-Pearson Likelihood Ratio:

$$\lambda \equiv -2\ln\left[\frac{\mathcal{L}(x=x_0)}{\mathcal{L}(\hat{x})}\right]$$

 $f(x) = \sum_{i=1}^{n} c_i \,\delta(x - x_i)$

Again, working in infinite dimensional parameter space makes this impossible...

New Question: Does there exist at least one halo function passing through (v, *eta*) *compatible at the desired CL?*

$$\tilde{\eta} \equiv \frac{\rho \sigma}{m_{\chi}} \int_{v_{\min}} d^3 v \, v \, f(\vec{v}, t)$$

Convex hull arguments can be applied to this 'constrained maximization' as well

Conclusions

- Presented technique that allows one to infer statistically interesting information when in the presence of unknown background function
- Generalized halo-independent analyses such that they are now applicable to all types of data
 - Likelihoods always maximized by speed/velocity distributions written as sum over small number of deltas

Method also allows for joint analysis with solar annihilation (see e.g. Ibarra and Rappelt 2017)

Back-Up Slides

Prior Methods

Interpretation of crosses ambiguous

Prior Methods

Interpretation of crosses ambiguous

Minimize likelihood functional with respect to halo function (enforcing monotonically decreasing requirement with KKT multipliers)

Karush-Kuhn-Tucker Conditions

$$L[\tilde{\eta}] \equiv -2\ln \mathcal{L}[\tilde{\eta}]$$

$$q(v_{\min}) = \int_{v_{\delta}}^{v_{\min}} dv \, \frac{\delta L}{\delta \tilde{\eta}(v)}$$

$$q(v_{\min}) \lim_{\epsilon \to 0+} \frac{\tilde{\eta}(v_{\min} + \epsilon) - \tilde{\eta}(v_{\min})}{\epsilon} = 0$$

Defines KKT multiplier

If **q(v)** only has isolated zeros... then halo function must be piecewise constant

 10^{-24}

10⁻²⁵,

 10^{-27}

200

SIMPL F

XENON10

_m=7GeV/ c^2 , $f_n/f_p=1$

400

 $\eta \rho \sigma_p c^2 / m \text{ [days^{-1}]}$

Prior Methods

Interpretation of crosses ambiguous

800

1000

600

v_{min} [km/s]

Minimize likelihood functional with respect to halo function (enforcing monotonically decreasing requirement with KKT multipliers)

Karush-Kuhn-Tucker Conditions

$$L[\tilde{\eta}] \equiv -2\ln \mathcal{L}[\tilde{\eta}]$$

Defines KKT multiplier

If q(v) only has isolated zeros... then halo function must be piecewise constant

$$\frac{10^{-22}}{300} + \frac{10^{-2}}{400} + \frac{10^{-1}}{500} + \frac{10^{-1}}{600} + \frac{10^{-2}}{700} + \frac{10^{-2}}{800} + \frac{10^{-2}}{10^{-23}} + \frac{10^{-2}}{10^{-24}} + \frac{10^{-24}}{10^{-24}} + \frac{10^{-24}}{10^{-24}} + \frac{10^{-24}}{10^{-26}} + \frac{10^{-26}}{10^{-26}} + \frac{10^{-26}}{10^{-26}} + \frac{10^{-26}}{10^{-26}} + \frac{10^{-26}}{10^{-26}} + \frac{10^{-26}}{10^{-26}} + \frac{10^{-41}}{10^{-26}} + \frac{10^{-41}}{10^{-41}} + \frac{10^{-41}}{10^{-$$

 v_{min} [km/s]

Quick Example

In the event of degenerate best-fit region one identify this as well

Annual Modulation

Earth's rotation about the Sun produces modulation in the scattering rate

Conventionally, assume form of f(v) in Galaxy, use Galilean transformation

$$\vec{u} = \vec{v}_{\odot} + \vec{v}_{\oplus}(t) + \vec{v}$$

Recall:

$$R_{\alpha i}(t) = \int d^3 v \, \mathcal{C} \, \frac{\mathcal{H}_{\alpha i}(\vec{v})}{v} \, f(\vec{v}, t)$$

Let us now change variables to absorb time-dependence in H:

Annual Modulation

Time-averaged halo function:

$$\tilde{\eta}_{BF}^{0}(v_{\min}) = \sum_{h=1}^{N} \frac{\mathcal{C}f_{h}^{\text{gal}}}{\bar{v}_{h}(v_{\min})} \qquad \qquad \frac{1}{\bar{v}_{h}(v_{\min})} \equiv \frac{1}{T} \int dt \, \frac{\Theta(|\vec{u}_{h} - \vec{v}_{\odot} - \vec{v}_{\oplus}(t)| - v_{\min})}{|\vec{u}_{h} - \vec{v}_{\odot} - \vec{v}_{\oplus}(t)|}$$

<u>A few notes:</u>

- Now working with 3D velocity distribution rather than speed
 - Minimization done done w.r.t. 4N parameters (quickly becomes numerically taxing)
- Best-fit halo function <u>only</u> piecewise constant at fixed times
- Require <u>at most</u> N streams, not (N 1)

Constrained Analysis:

$$\tilde{\eta}^* = \mathcal{C} \sum_{h=1}^{N+1} f_h^{\text{gal}} \frac{1}{T} \int dt \, \frac{\Theta(|\vec{u}_h - \vec{v}_{\odot} - \vec{v}_{\oplus}(t)| - v^*)}{|\vec{u}_h - \vec{v}_{\odot} - \vec{v}_{\oplus}(t)|}$$

DAMA/LIBRA

Infamous DAMA modulation at > 9 sigma

We can now infer preferred galactic velocity distributions, use these to calculate timeaveraged rates and make apples-to-apples comparison with e.g. Xenon IT

DAMA/LIBRA

 δ (keV)

Isotropy

Enforcing isotropy makes velocity distribution more realistic and eases computation

• Numerical simulations expect (more or less) isotropic distributions

$$f_{G}(\vec{u}) = f_{G}(|\vec{u}|)$$

$$R_{\alpha i}(t) = \int du \, \vec{\mathcal{H}}_{\alpha I}^{\text{gal}}(u, t) F^{\text{gal}}(u)$$

$$\vec{\mathcal{H}}_{\alpha i}^{\text{gal}}(u, t) \equiv \frac{1}{4\pi} \int d\Omega_{u} \mathcal{H}_{\alpha i}^{\text{gal}}(\vec{u}, t)$$

$$F^{\text{gal}}(u) \equiv 4\pi u^{2} f^{\text{gal}}(u)$$

$$\tilde{\eta}_{\text{BF}}(v_{\min}, t) = \sum_{h=1}^{N} \mathcal{C}F_{h} \times \begin{cases} \frac{1}{u_{h}} & v_{\min} \leq u_{h} - u_{\oplus}(t) \\ \frac{u_{\oplus}(t) + u_{h} - v_{\min}}{2u_{\oplus}(t)u_{h}} & u_{h} - u_{\oplus}(t) < v_{\min} < u_{h} + u_{\oplus}(t) \\ \frac{u_{\oplus}(t) = |\vec{v}_{\odot} + \vec{v}_{\oplus}(t)|}{2u_{\oplus}(t)u_{h}} \end{cases}$$

Connections with Indirect Detection

Capture rate in Sun depends on same distribution

$$C = \sum_{i} \int_{0}^{R_{\odot}} 4\pi r^{2} dr \,\eta_{i}(r) \frac{\rho_{\text{loc}}}{m_{\chi}} \int_{v \le v_{max,i}^{\text{SUN}}(r)} d^{3}v \, \frac{f(\vec{v})}{v} (v^{2} + v_{\text{esc}}(r)^{2}) \int_{m_{\chi}v^{2}/2}^{2\mu^{2}(v^{2} + v_{\text{esc}}(r)^{2})/m_{A}} dE_{R} \, \frac{d\sigma_{i}}{dE_{R}}$$

Can insert halo-independent DD results into indirect detection calculations, or perform joint analysis

