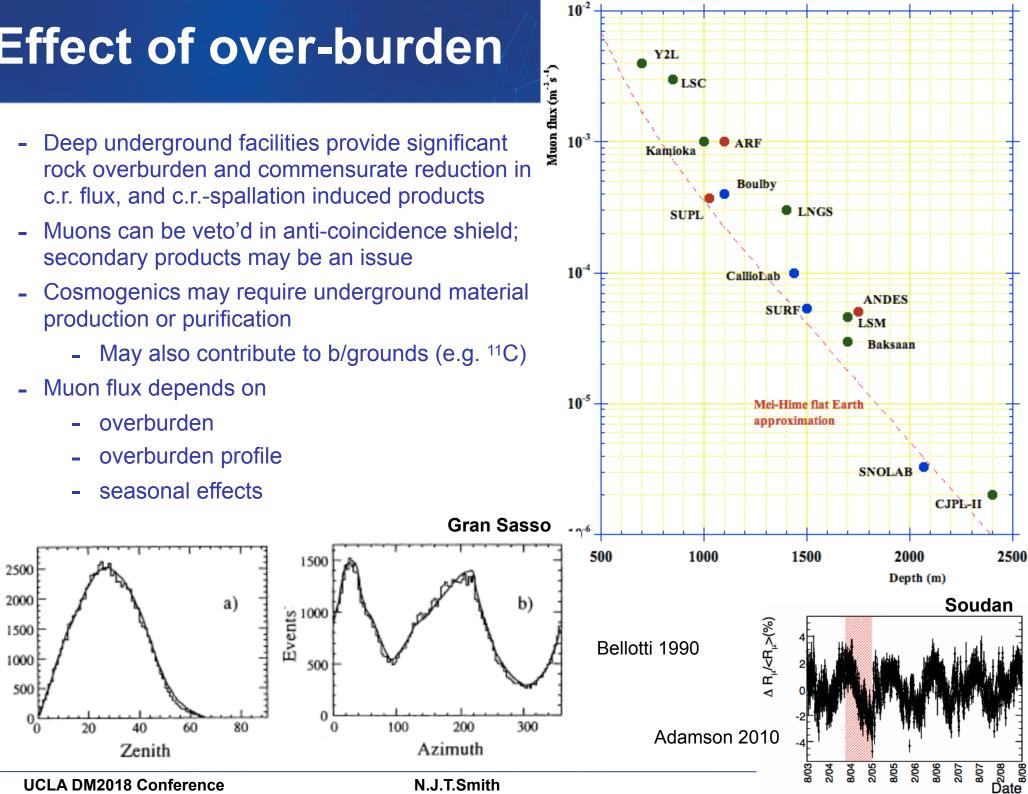


Development of Deep Underground Facilities

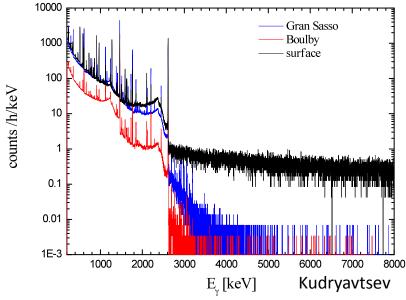
Nigel J.T. Smith Executive Director, SNOLAB

Considerations for a facility

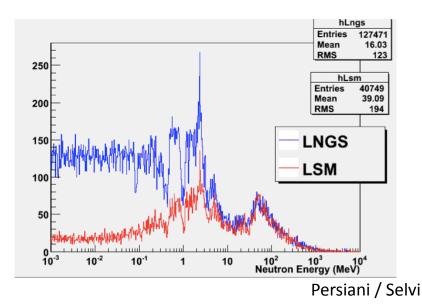

- Facilities provide:
 - Surface support and facilities
 - Scientific support and personnel: design, construction, operation/analysis
 - Ancillary science support: low background assay
 - Infrastructure support and personnel: workshops, chem labs, I.T.
 - Access (vertical or horizontal); Space (monolithic or distributed; scale)
 - Utilities: power, ventilation, heat management, water, gases/liquids
- Other characteristics
 - Location (neutrino flux from beam, reactor, Earth, access to facility)
 - Depth limits muons, cosmogenics
 - Backgrounds muon, spallation, local environment
 - Cleanliness and radiological interference
 - "Quality of life" for researchers: breadth of programme, access policies
- Health/Safety and security protocols
- Funding and stability: multi-year budgets, host nation support, host organisation stability and engagement

Underground Facilities

Effect of over-burden



Events


Radiogenic Backgrounds

- Deep underground facilities provide significant rock overburden and commensurate reduction in c.r. flux, and c.r.-spallation induced products (neutrons)
- Cosmogenics may require underground material production or purification
 - May also contribute to b/grounds (e.g. ¹¹C)

- Reduction in γ-ray background at higher energies from c.r. and neutron reduction
- Below 3.5MeV dependent on local geology and rock material

- Neutron production from c.r. muon spallation, U/Th fission, (α, n) reactions, radon reactions
- Spectrum in laboratory depends on local geology (rock composition)

Characteristics

	SNOLab	LNGS	LSC	Boulby	LSM	Callio Lab	Baksan	SURF	CJPL- I/II	Kamioka	Y2L
Date of creation	2003 (1991)	1987	2010	1989	1982	1995	1967	2007 (1967)	2009/ 2014	1983	2003 A6 2014 A5
Personnel	100	106	12	6	12	13	227	125	20	94	4
Surface U/S [m ²]	5350/ 3100	17000/ 95000	1600/ 2550	1700/ 400	400	220	1600/ 10000	1900/ 190	8000	15000/ 3000	300/ 60
Volume [m ³]	30000	180000	10000	7200	3500	1000*	23000	7160	4000/ 300000	150000	5000
Depth [m]	2070	1400	850	1100	1700	1440	1700	1500	2400	1000	700
Access [V or H]	V	н	н	V	н	V / drive in	н	н	н	н	Drive in
Makeup Air [m ³ /h]	12000	35000- 60000	20000	300	5500	3600	1440	510000	-	6000	3300
Air change/day	10	5-8	48	24	38	7	-	144 (LUX)	-	6	15
Muon flux [m/m²/s]	3.1 10-6	3 10-4	3 10 ⁻³	4 10-⁴	4.6 10 ⁻ 5	1 10-4	3 10-5	5.3 10-5	2 10-6	10 ⁻³	4 10 ⁻³
Radon [Bq/m³]	130	80	100	<3	15	70	40	300	40	80	40
Cleanliness	2000 or better	Only in sector	Only in sector	10000	ISO9	Only in sector	Only in sectors	3000	Only in sectors	Only in sectors	Only in sectors
	lanni - TAUP2017									UP2017	

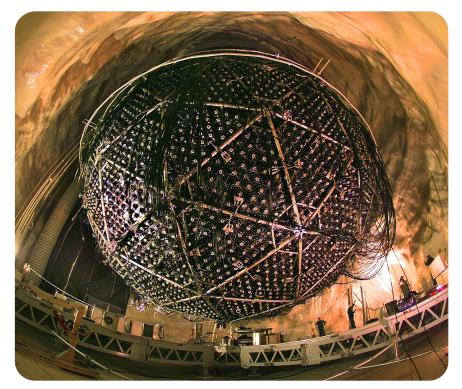
UCLA DM2018 Conference

N.J.T.Smith

23rd February, 2018

Upcoming facilities

	SUPL	ARF	ANDES	
Expected to be in operation	end of 2018	mid-end of 2019	2027	
Personnel	3	20	_	
Access	Drive in	V / drive in	н	
Volume [m ³]	3025	47000	70000	
Surface [m ²]	350	2000	2800	
Outside surface [m ²]	100	1000	Foreseen building	
Depth [m]	1025	1100	1750	
Muon Flux [μ/m²/s]	3.7 10-4	~10 ⁻³	~5 10 ⁻⁵	
Makeup air [m³/h]	From the mine through Rn purification	7840	-	
Air change/day	96	6	-	
Cleanliness requirement	Yes (SNOLab style)	Only in sectors	-	


lanni - TAUP2017

The SNOLAB Facility

- Hosted in the Creighton nickel mine, near Sudbury, Ontario, hosted by Vale Ltd.
- Underground campus at 6800' level, 0.27µ/m2/day
- Developed from the original SNO detector to develop Canadian facilities for international engagement
- Operational funding through CFI, MRI/MEDI (Province of Ontario)
 - Operated under 'free-at-point-of-access' model ubiquitous in nuclear and particle physics
- Managed as a joint venture between five Canadian Universities (Alberta, Carleton, Queen's, Laurentian, Montréal)

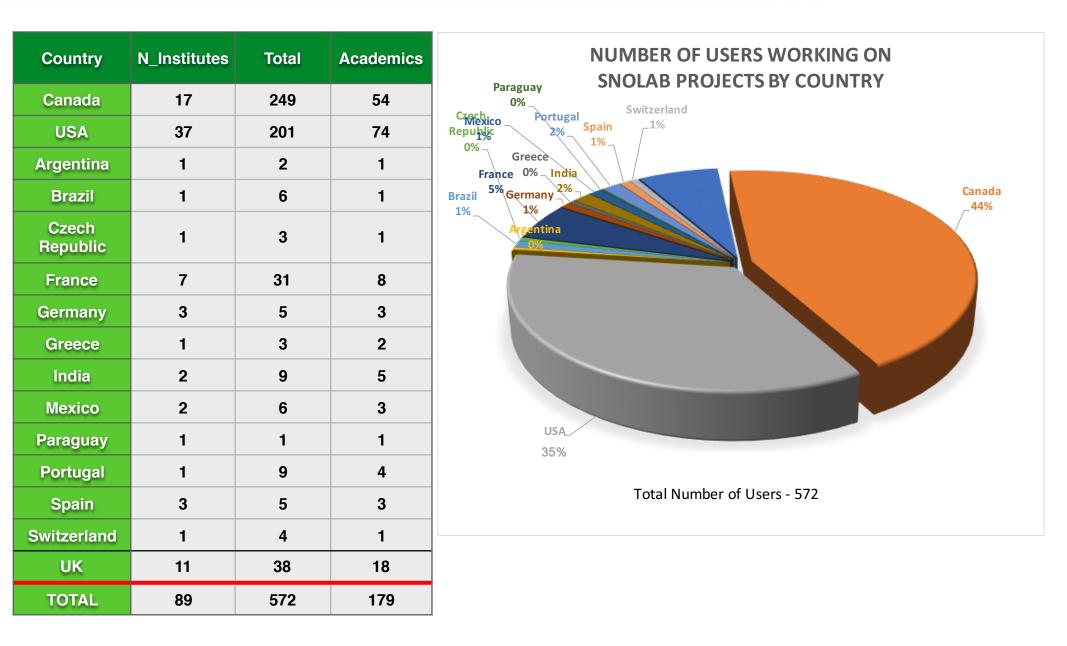
UCLA DM2018 Conference

SNOLAB Science Programme



Experiment	Neutrino	Dark Matter	Other	Space allocated	Status
COUPP-4		\checkmark		"J"-Drift	Completed
CUTE		\checkmark	Test Facility	Ladder Labs	In Preparation
DAMIC		\checkmark		"J"-Drift	Operational
DEAP-1		\checkmark		"J"-Drift	Completed
DEAP-3600		\checkmark		Cube Hall	Operational
DEAP-50T/CLEAN		\checkmark		Cube Hall	Letter of Intent
DMTPC		\checkmark		Ladder Labs	Concept Phase
DUST			Test Facility	Ladder Labs	Letter of Intent
FLAME			Genomics	External Drifts	Operational
Ge-1T	\checkmark			Cryopit	Letter of Intent
nEXO	V			Cryopit	Concept Phase
nEXO Shield	V			Cryopit	Concept Phase
HALO	V			Halo Stub	Operational
MiniCLEAN		\checkmark		Cube Hall	Commissioning
MODCC			Mining Data Centre	Surface Facility	Operational
NEWS		\checkmark		Cube Hall	In Preparation
PICASSO-III		\checkmark		Ladders Labs	Completed
PICO-2L		\checkmark		"J"-Drift	Operational
PICO-60		\checkmark		Ladder Labs	Operational
PICO-500		V		Ladder Labs	Letter of Intent
PUPS			Seismicity	Various	Completed
REPAIR			Genomics	Chem Labs	Operational
SuperCDMS		\checkmark		Ladder Labs	In Preparation
SNO+	\checkmark			SNO Cavern	Commissioning

UCLA DM2018 Conference


N.J.T.Smith

23rd February, 2018

Global connections

Lab Co-ordination efforts

- Co-ordination efforts between deep underground facilities are strengthening
 - LNGS/SNOLAB initiated G7 GRO GRI proposal
 - <u>https://www.bmbf.de/files/151109_G7_Broschere.pdf</u>
 - DULIA: attempt for EU coordination (funding) between LNGS, LSC, Boulby, LSM, CallioLab
 - Coordination and links on outreach and comms
 - LNGS/LSC deploying muon counters available to public
 - Sharing of best practice
 - Developing in operational matters, EH&S, expt. management, expt. reviews, governance
 - low background counting/assay (LRT series), shared databases
 - Sharing of work loads
 - 'blitzes' on low background counting
 - Can this extend to science projects?
 - e.g. Cygnus distributed array of detectors for DM
- IUPAP WG9 Neutrino Panel and inclusion of $0\nu\beta\beta$
 - Forms a major part of the drivers for deep underground facilities as **infrastructure** for the delivery of this science field
 - Connecting to ApPIC working group

Global Argon Collaboration

SNOLAB

- An example of the deep underground laboratories coordinating together to support a major community global initiative
 - LNGS, LSC, SNOLAB supporting assay programme
 - Coordinated approach for UAr extraction, assay and storage
 - Coordinating with collaboration on engaging funding agencies

Deep underground laboratory support for global collaboration towards discovery of dark matter utilising liquid argon detectors.

To whom it may concern;

As hosts of the existing operational liquid argon direct dark matter detectors, and as proponents and supporters of the Underground-GRI initiative, the LNGS, SNOLAB and LSC deep underground research facilities are pleased to recognize the collaborative developments within the global liquid argon dark matter community. The DarkSide project at LNGS, the DEAP project at SNOLAB and the ArDM project at LSC are all developing new technologies and capabilities to search for WIMP dark matter, and are beginning to coalesce into one collaboration to develop future, larger generations of liquid argon direct dark matter detectors. We encourage and support the development of this global community, with a focus on the development of DarkSide-20k at LNGS in the first instance, and a larger detector at a location to be determined from scientific requirements, in the future. Using available assay and research infrastructure, the three deep underground research facilities will support the activities and development of the various generations of liquid argon detectors.

Stefano Ragazzi Director, LNGS

Aldo Ianni Director, LSC

Nigel J.T. Smith Director, SNOLAB

Summary

- Deep underground research facilities provide the ultra-quiet radioactive background environments for rare or low energy interactions studies
- Coordination between the deep underground facilities is growing, with dialogue about areas where we can improve support to the community
 - Low background assay and material production
 - Dissemination of best practice in technical support
 - Dissemination of best practice in management support
 - Coordination of work loads
 - Strategic engagement with community groups
 - Strategic engagement with funding and support groups

End of... Dark Matter 2018