# Procuring 50 Tonnes of Underground Argon for DS-20k

Andrew Renshaw, for the DarkSide Collaboration

University of Houston

UCLA DM 2018 February 23, 2018





### Terrestrial Ar Isotope Production

- <sup>36</sup>Ar dominates in Universe
- <sup>40</sup>Ar comes from <sup>40</sup>K decay

#### Atmosphere

• <sup>39</sup>Ar produced by cosmic rays

| <sup>39</sup> Ar production reactions    |                                          |  |  |
|------------------------------------------|------------------------------------------|--|--|
| <sup>40</sup> Ar(n,2n)→ <sup>39</sup> Ar | <sup>40</sup> Ar(p,pn)→ <sup>39</sup> Ar |  |  |
| <sup>40</sup> Ar(n,np)→ <sup>39</sup> Cl | <sup>40</sup> Ar(p,2p)→ <sup>39</sup> Cl |  |  |
| <sup>40</sup> Ar(n,pn)→ <sup>39</sup> Cl | <sup>40</sup> Ar(γ,n)→ <sup>39</sup> Ar  |  |  |
| <sup>40</sup> Ar(n,d)→ <sup>39</sup> Cl  | <sup>38</sup> Ar(n,γ)→ <sup>39</sup> Ar  |  |  |
|                                          | <sup>40</sup> Ar(μ⁻,n)→ <sup>39</sup> Cl |  |  |

(Loosli & Oeschger, Earth Planet. Sci. Lett. 5 (1968) 191-198)

#### Crust

- No cosmic rays
- <sup>39</sup>Ar produced underground



<sup>(</sup>O. Šrámek, et al., Geochim. Cosmochim. Acta 196 (2017) 370)



Renshaw, UCLA DM 18

Crust

Mantle

Very Low U and Th

(lowest <sup>39</sup>Ar)

Ippm U and Th

Atmosphere (8×10-16 39 Ar)

### Tacking Down a Source

2007 In USA Helium reservoir <sup>39</sup>Ar content < 5%compared to atmospheric Argon



Yamus Kylinel Rohm, Oni, S. 25 (200), USA
 Yangsumor de Tainang, Sonon, Barnol Gainang, S. Danding, M. 40 (20), USA (20),

2007 The exploration was extended to CO<sub>2</sub> wells

Notes on Trip to Bueyeros - May 23-26 2007 and Proposal for Small Scale Argon Production in the 2008 Campaign

Notes on Trip to Bueyeros - May 23-26 2007 and Proposal for Small Scale Argon Production in the 2008 Campaign

> F. Calaprice, E. de Haas, C. Galbiati, A. Goretti, A. Ianni, A. Nelson

Physics Department of Princeton University

February 10, 2008

|                               | Gas from Liquid Trap | Gas from the PSA |
|-------------------------------|----------------------|------------------|
| Ar                            | 290 ppm              | 2.5%             |
| CH4                           | 11.5%                | 1200 ppm         |
| CO <sub>2</sub>               | 79.3%                | 6500 ppm         |
| C <sub>x</sub> H <sub>y</sub> | 0 ppb                | 0 ppb            |
| H <sub>2</sub>                | 467 ppm              | 750 ppm          |
| H <sub>2</sub> O              | 2860 ppm             | 5000 ppm         |
| Не                            | 700 ppm              | 22.3%            |
| N <sub>2</sub>                | 8.7%                 | 73.8%            |
| 02                            | 550 ppm              | 120 ppm          |

Table 1: Composition of the stream from the liquid trap and of the stream from the PSA unit.



#### 2008 @ Reliant plant Production rate ~ 0.5 kg/day Reduction of <sup>39</sup>Ar compared to atmospheric > factor 10

#### First Large Scale Production of Argon Depleted in <sup>39</sup>Ar from Underground Wells

#### Abstract

We report on the first large-scale production of depleted args from underground gas wells. We processed the exhaust stream of the CO<sub>2</sub> papifed the Relaxin Dyc Pere Han in Bayeros, NA, with a special Vorum Swirg Adsorption plant. The CO<sub>2</sub> papi for directly from the well into the Buyliner contains args at the concentration of 40-70 jpm, and the args concentration in the exhaust args to the level of 8000-10000 ppm ( $\pm$ 10%) in a single stress the stress stress stress stress stress args to the level of 8000-1000 ppm ( $\pm$ 10%) in a single pass. The args momentum rate at Co<sub>2</sub> Sa<sub>2</sub> def determined that the underground argon is depleted in <sup>32</sup>AT by a factor 10 or more relative to atmospheric args and arisets by comise rays, by analysis in a low-background proportional courter. *More accurate* analysis of the "*X* activity" is under weight.

Depicted agon is of interest for the construction of large scale WDP dark matter sourches and detectors of reactor neutrinos for non-policitation efforts. WDP dark matter sourches of high sensitivity may require depicted agon targets of 100 nonor more. Underground agone discus and works solutions for the production of depicted anym targets. For lot this work, only a few grams of depicted argon from underground wells were separated and purified from natural gas. To the best of our knowledge, the work reported in this paper is the first production of depicted argon from underground sources at the lags-cale.

Key words: Dark Matter; Low Background Detectors; Cryogenic Noble Gases.





#### Source Found

New exploration at Doe Canyon in 2008 ...





#### DarkSide UAr Source



### DS-50 UAr Extraction: Doe Canyon



| Contaminants trapped in          |                                  |                                |  |
|----------------------------------|----------------------------------|--------------------------------|--|
| VPSA zeolite                     |                                  |                                |  |
| C <sub>3</sub> H <sub>8</sub>    | C <sub>7</sub> H <sub>14</sub>   | C <sub>7</sub> H <sub>16</sub> |  |
| $C_5H_{10}O$                     | $C_6H_{13}I$                     | $C_6H_{12}O$                   |  |
| C <sub>5</sub> H <sub>12</sub>   | C <sub>6</sub> H <sub>13</sub> I | $C_5H_8O_2$                    |  |
| C <sub>6</sub> H <sub>14</sub>   | C <sub>7</sub> H <sub>16</sub>   | C <sub>8</sub> H <sub>16</sub> |  |
| C <sub>5</sub> H <sub>10</sub>   | C <sub>7</sub> H <sub>16</sub>   | C <sub>8</sub> H <sub>16</sub> |  |
| $C_5H_{10}O$                     | $C_6H_{12}O$                     | C <sub>8</sub> H <sub>18</sub> |  |
| C <sub>5</sub> H <sub>10</sub> O | $C_6H_{12}O$                     | C <sub>8</sub> H <sub>18</sub> |  |
| C <sub>6</sub> H <sub>14</sub>   | C <sub>7</sub> H <sub>16</sub>   | $C_6H_{10}O_2$                 |  |
| $C_6H_{12}O$                     | $C_6H_6$                         | C <sub>8</sub> H <sub>18</sub> |  |
| C <sub>6</sub> H <sub>12</sub>   | $C_6H_6$                         | $C_9H_{20}$                    |  |
|                                  |                                  |                                |  |

| Gas Type           | Concentration from well |
|--------------------|-------------------------|
| Carbon Dioxide     | 96%                     |
| Nitrogen           | 2.4%                    |
| Methane            | 0.57%                   |
| Helium             | 0.43%                   |
| Other hydrocarbons | 0.21%                   |
| Argon              | 440 ppm                 |

- Approximate product composition:
  - He 85-95%
  - Ar 3-6%
  - $N_2 1 10\%$
- Average production rate:
  - 140 g/day





### DS-50 UAr Purification: Fermilab





| Contaminants frozen in cryogenic systems |                                  |                                |              |                                  |                                |
|------------------------------------------|----------------------------------|--------------------------------|--------------|----------------------------------|--------------------------------|
| C <sub>3</sub> H <sub>8</sub>            | $C_5H_{10}O$                     | C <sub>7</sub> H <sub>14</sub> | $C_6H_{12}O$ | C <sub>7</sub> H <sub>16</sub>   | C <sub>8</sub> H <sub>18</sub> |
| $C_5H_{10}O$                             | $C_5H_{10}O$                     | $C_6H_{13}I$                   | $C_6H_{12}O$ | C <sub>6</sub> H <sub>12</sub> O | C <sub>8</sub> H <sub>18</sub> |
| $C_5H_{12}$                              | C <sub>6</sub> H <sub>14</sub>   | $C_6H_{13}I$                   | $C_7 H_{16}$ | $C_5H_8O_2$                      | $C_6H_{10}O_2$                 |
| $C_6H_{14}$                              | C <sub>6</sub> H <sub>12</sub> O | $C_7 H_{16}$                   | $C_6H_6$     | C <sub>8</sub> H <sub>16</sub>   | C <sub>8</sub> H <sub>18</sub> |
| C <sub>5</sub> H <sub>10</sub>           | $C_{6}H_{12}$                    | C <sub>7</sub> H <sub>16</sub> | $C_6H_6$     | C <sub>8</sub> H <sub>16</sub>   | $C_{9}H_{20}$                  |



## Successful Target Production • <sup>39</sup>Ar – 0.73±0.11 mBq/kg

• <sup>85</sup>Kr – 2.05±0.13 mBq/kg

#### TOTAL UAr MASS ~ 157.5 kg Filled into Darkside-50 on April 3, 2015

• Residual contamination after all processing (measured by PNNL):

|                | Concentration | moles | mass (g) |
|----------------|---------------|-------|----------|
| Nitrogen       | 279 ppm       | 1.120 | 31.37    |
| Oxygen         | 192 ppm       | 0.773 | 24.74    |
| Methane        | 95 ppm        | 0.380 | 6.08     |
| Helium         | 3 ppm         | 0.014 | 0.054    |
| Carbon Dioxide | 14 ppm        | 0.055 | 2.42     |



P. Agnes et al. (DarkSide Collaboration), Phys. Rev. D 93, 081101(R)



#### <sup>39</sup>Ar < 0.07% of atmospheric argon



### Scaling-Up UAr Production

ArDM DarkSide DEAP MiniCLEAN

A Single Global Program for Direct Dark Matter Searches Currently taking data: ArDM, DarkSide-50, **DEAP-3600 Next step: DarkSide-20k at LNGS (2021-)** Last Step: **300 tonnes detector**, location t.b.d **(2027-)** 



#### DarkSide-20k

- 30 tonnes UAr total
- Target needed by 2021
- With construction, need to produce target on timescale of 1 year
- → Target ~250 kg/day extraction rate



#### $\rightarrow$ No additional scale up of UAr plant required!!!

#### Future 300 tonnes detector

- ~500 tonnes UAr total
- Target needed by 2027
- With 250 kg/day and continued production after DS-20k target production would have target procured in time



#### Enter the Age of Urania







### Urania PSA R&D





#### Pilot Plant is under test in Naples



DARK SIDE

12

## Gas Input Stability Monitoring

- Monitor the long term stability of the input gas composition at Doe Canyon
  - Does the helium composition fluctuate?
  - Is there something we are missing?
- Critical to the long term operational stability
- PNNL developed method to measure gas composition over long periods of time (weeks to months)
  - Autonomous and remotely accessible UGA

#### Long term run taken last year

- Residual oxygen in DS-50 UAr is from air infiltration
- Precision gas analysis of CO<sub>2</sub>
  - O<sub>2</sub> = 6.7 ppm
  - Ar = 427 ppm
- Ar:O<sub>2</sub> ratio in air 0.045
- AAr concentration in the UAr:
  - (6.7ppm \* 0.045)/427ppm = 7.0e-4

#### LOGAN (LOng-term Gas ANalyzer)



Funded by: PNNL Lab Directed R&D

- Potential <sup>39</sup>Ar reduction without air infiltration:
  - DS-50 <sup>39</sup>Ar rate = 0.73 mBq/kg

1 Bq/kg \* 7.0e-4 = **0.70 mBq/kg** 

• <sup>39</sup>Ar rate in UAr due to AAr:

- Residual after air infiltration correction = 30 μBq/kg
- 33,000 time lower than AAr!



### UAr Shipping and Storage

Custom designed cryogenic shipping vessel (Wessington Cryogenics)

- LN<sub>2</sub> fed UAr condenser (UCLA)
- UAr-pressure dependent valve controls cooling (UCLA)



#### **Open Questions**

- What is the cosmogenic <sup>39</sup>Ar production rates at various altitudes, and how does this affect shipping and storage of UAr?
- What is the maximum time allowed at Doe Canyon elevation?
- Is underground storage needed?
- How do we store the argon for long terms, and what are the associated costs?

In progress:

- Comparison of cosmogenic activation codes and our own analytical estimate for <sup>39</sup>Ar production
- Measurement of <sup>39</sup>Ar activation rate by beam measurement





### Aria: Path from Fabrication to Production



### Status: Full Tower – 30 Modules

- First 3 modules
  - Column module #1
  - Top module (condenser)
  - Bottom module (re-boiler)
- Column completion
  - Of remaining 27 column modules: 4 modules (#28-25) 4 modules (#24-21)
- built end-2016 built 2017

built 2016

built 2016

built 2016

- All 11 modules
  - Successfully leak-tested at CERN



- Additional advantage:
- Will serve to validate and adjust Seruci-1 welding scheme





Bas

Haut

Medium



- DarkSide-50 successfully produced 157 kg argon target with 1400x less <sup>39</sup>Ar than atmospheric argon
  - Challenges to DarkSide-50 target production are understood (minor contaminations)
- Residual <sup>39</sup>Ar in DarkSide-50 target likely from an air infiltration
  intrinsic <sup>39</sup>Ar in UAr < DarkSide-50 target </li>
- Plans for producing and purifying 50 tons of UAr for DarkSide-20k are firmly in place
- Further reduction of <sup>39</sup>Ar possible through cryogenic distillation with Aria





### Agreement with Kinder Morgan (KM)

- Currently spans from January 1, 2017 through December 31, 2019, with option for renewal
- Agreement grants access to KM side stream of up to 5,500 Mscf to procure up to 50 tonnes of underground argon.
- Agreement grants permission to install the "Argon Extraction Plant" on an area of 16.0 x 19.2 square meters.
- Gas flow at outlet must stay within +-3% of inlet gas flow.

\*\*\*\*None of this is possible without the incredible support from Kinder Morgan and all of their staff at the Doe Canyon Facility\*\*\*





### Aria Principle of Separation

- Based on difference in volatility between molecules of the same compound containing different isotopes of the same element
- Fieschi-Terzi model gives the ratio between the vapor pressure of different isotopes
- Model tested on p(<sup>36</sup>Ar)/p(<sup>40</sup>Ar), compared with experimental data from Boato-Scoles
- Model then extended to p(<sup>39</sup>Ar)/p(<sup>40</sup>Ar)
- Estimated the number of theoretical equilibrium stages with Fenske equation





Thousands of equilibrium stages are needed

Renshaw, UCLA DM 18

### Aria Column Overview

- 28 Modules: 12 m each
- 1 Condenser module: 7 m
- 1 Reboiler module: 5m
- Total height: 348 m
- Outer Diameter of the column: 323.8 mm
- Inner Diameter of the column: 317.8 mm
- Outer Diameter of cold box: 711.2 mm
- Packing: CY from Sulzer
- Number of theoretical stages: 2870





#### Aria Shaft

R&D Column 30 cm diameter 350 m height

Production Column 150 cm diameter 350 m height







### Aria: Beyond Argon

#### Isotope Market Study Summary

| Isotopo | 2010    | 2011    | 2012    | 2017    | CAGR 2012-17 |
|---------|---------|---------|---------|---------|--------------|
| C-13    | 46.963  | 50.316  | 54.241  | 95.791  | 12.05        |
| D2      | 34.052  | 36.416  | 39.091  | 72.765  | 13.23        |
| 0-18    | 19.531  | 21.197  | 23.013  | 38.593  | 10.89        |
| N-15    | 7.325   | 7.869   | 8.323   | 13.66   | 10.42        |
| Altri   | 1.893   | 2.029   | 2.165   | 3.228   | 8.32         |
| Totale  | 109.764 | 117.827 | 126.833 | 224.037 | 12.05        |



DarkSide - F. Gabriele

Renshaw, UCLA DM 18



## **Boarder Impact and Transfer Technology**



DARK SIDE



DarkSide - F. Gabriele

# Applications

- SiPM NOA +  $3D\pi$ 
  - **PET**
  - LiDAR
- Electron-Beam Welding (EB) NOC
  - Reactor
  - SubMarine
- Urania:
  - TOF-PET  $3D\pi$
- Aria:
  - Tracer PET  $3D\pi$
  - Breath Test
  - <sup>15</sup>N New Generation Nuclear Power Plants



