DARWIN: Towards the ultimate Dark Matter Detector

Manfred Lindner

on behalf of the Collaboration
DARWIN = XENON + more groups

The XENON program at Gran Sasso, Italy (3600 mwe)

<table>
<thead>
<tr>
<th>XENON10</th>
<th>XENON100</th>
<th>XENON1T & XENONnT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mass</td>
<td>25 kg</td>
<td>161 kg</td>
</tr>
<tr>
<td>Drift length</td>
<td>15 cm</td>
<td>30 cm</td>
</tr>
<tr>
<td>σ_{SI} limit (@50 GeV/c^2)</td>
<td>8.8×10^{-44} cm^2</td>
<td>1.1×10^{-45} cm^2</td>
</tr>
</tbody>
</table>

See talks by: E. Aprile, K. Ni, L. Grandi

The XENON program at Gran Sasso, Italy (3600 mwe)

See talks by: E. Aprile, K. Ni, L. Grandi

XENONnT being prepared while XENON1T runs switching gears
Scaling Considerations

direct light signal → S1 drift of electrons → S2
→ excellent 3D position → fiducialization
→ cut backgrounds from ‘dirty’ surfaces

- S2/S1: ER > NR; pulse height & shape, ...

Nuclear Recoil
\[\chi / n \]

Electronic Recoil
\[\gamma / \beta \]

- technological challenges
 - longer drift length → increased HV
 - handling more Xe gas
 → cryogenics, distillation, safety
 - engineering
 - ...

ultra low backgrounds
- underground laboratory
- adequate \(\mu \)-veto, n-shielding
- extremely radio-pure materials
- Rn emanation, outgassing
- very clean Xe gas
 * Kr & Rn reduction & analytics
 * electron life-time
- MC simulations
Two main questions:
1) can a bigger version be realized in principle?
 ➔ phased program with reasonable technology steps
2) is it worth the effort?
 ➔ important connections & consider the risks
The Challenges towards DARWIN

Technology: Bigger...
- Longer drift length \leftrightarrow HV
- Diameter \leftrightarrow TPC electrodes
- Increased mass \leftrightarrow cryogenics, LXe purification, safe storage
- Detector response \leftrightarrow calibration & required corrections
- More or bigger photo-sensors \leftrightarrow LY, QE, long term stability

Low Background: Sufficient S/B...
- Cosmogenic backgrounds \rightarrow go deep enough, add μ-veto, n-veto
- Fiducialization \leftrightarrow
- Detector materials
 - radio-pure detector components, surfaces, γ‘s, neutrons from (α,n)
 - clean cryo-liquid \leftrightarrow e-driftlength, avoid 222Rn, 85Kr, ...
 - techniques to select clean materials (γ and Rn screening)
 - techniques to monitor LXe purity at required level
- Active background suppression \leftrightarrow distillation
- The neutrino floor... and $2\nu\beta\beta$

Often mixed requirements: E.g. PMTs, Rn reduction, ...
Pushing the Sensitivity

assumptions are easy
➔ must demonstrate low background

DARWIN

baseline …?
+ cost
+ personnel

XENON1T

XENONnT

reached, Jan 2017

Baseline
1 µBq/kg ^{222}Rn
0.02 ppt of $^{87}\text{Kr}/\text{Xe}$

Calendar Year

• γ screening facilities of XENON:
 • Several screening stations
 @MPIK underground lab (1mBq/kg)
 • GEMSE @Freiburg (100 µBq/kg)
 • UZH: GATOR @LNGS (100µBq/kg)
 • GIOVE @MPIK @15mwe
 (\(^{226}\)Ra: 70µBq/kg, \(^{228}\)Ra: 110µBq/kg, \(^{228}\)Th 50µBq/kg)
 • MPIK-GEMPIs @LNGS (10µBq/kg)

→ very powerful
γ screening capabilities
(capacity, sensitivity)
of XENON + others

→ + ICPMS, …
Example: Radio-pure PMTs for XENON1T

Hamamatsu
R11410-21
3”, 248 pcs

- careful material selection,
- screening of materials
- screening of final PMTs
< 1mBq/PMT in U/Th

Intensive cooperation:
- improvements & optimization
- radio-purity

- extensive testing at room temperature and cold
high QE: 35% @ 175nm
stability, tightness,…
30% single PE resolution

JINST 12 P01024 (2017)

⇌ electronic recoil BG from materials

JCAP 04 (2016) 027
unstable ^{85}Kr in air \rightarrow impurity in Xenon gas
- active removal by distillation
- control by precise measurements

Kr measurements:
- with gas chromatography
- Rare Gas Mass Spectroscopy (RGMS @MPIK)
 \rightarrow measure ^{nat}Kr to ppt level
 \rightarrow extrapolate: ^{85}Kr from atmospheric abundance
 \rightarrow RGMS down to ppq level

- ^{84}Kr measurement with atomic trap (ATTA @ Columbia U)
 \rightarrow measurement of ^{84}Kr to ppt level
 \rightarrow extrapolate: ^{85}Kr from atmospheric abundance
 \rightarrow atom trap operational and efficient for Ar*
Krypton Removal by cryogenic Distillation

- commercial Xenon contains 1 ppm – 10 ppb of Kr
- ^{85}Kr is unstable

- goal: reduce Kr to sub ppt
- XENON100 achieved (19 ± 1) ppt

XENON1T distillation column (Münster):
- through-put up to 6.5 kg/hr
- separation factor > 6.4 10^5
- final Kr/Xe < 1 ppt
- capable to obtain an output concentration < 48 ppq

- also operated for Rn removal
- already factor 2 below the 100ppq goal of DARWIN
Radon screening facilities of XENON:

222Rn emanation technique
- based on MPIK gas counting systems
- few atoms/probe
- large samples \leftrightarrow absolute sensitivity
- some established numbers:
 - Nylon (Borexino) < 1μBq/m2
 - Copper (Gerda): 2μBq/m2
 - Stainless steel (Borexino): 5μBq/m2
 - Titanium: (100 ± 30) μBq/m2

Auto-Ema: New automatized Rn screening facility @MPIK \Rightarrow many samples

\Rightarrow Thousands of past and new γ and Rn screening results in a materials data base @MPIK

\Rightarrow In addition: cleanliness procedures (production, treatment, dust, storage, …)
Rn removal by cryogenic Distillation

- natKr/Xe < 360 ± 60 ppq
- 222Rn 10 µBq/kg target concentration
- lowest background level of all LXe exps.
- DARWIN goal for 222Rn: 0.1 µBq/kg ➔ another factor 100

XENON1T Rn budget well understood

- Kr level measured precisely by RGMS
- DARWIN goal for 222Rn: 0.1 µBq/kg ➔ another factor 100
DARWIN Conceptual Design

- **Baseline:** 50t LXe
- **40t LXe TPC, aim at 200 t*yr**
- **TPC dimension 2.6m x 2.6m**
- ~1800 * 3” PMTs (or ~1000 4” PMTs)
- **Low-background cryostat**
- **PTFE reflector panels**
- **Copper E-field shaping rings**
- **Water Cherenkov shield (~14m diameter)**
- **Liquid scintillator neutron veto under study**
- **Possible location LNGS**
- **aim at sensitivity of a few 10^{−49} cm^2, limited by irreducible ν-backgrounds**
- **R&D and initial design now**
- **Timescale: after XENONnT**
- **Cost effective:**
 - use existing Xe gas; buy more & re-sell
 - no enrichment (also faster)

JCAP 11, 017 (2016)

www.darwin-observatory.org
The DARWIN Collaboration

France:
- Subatech
- LAL
- LPNHE

Germany:
- University of Münster
- MPIK, Heidelberg
- University of Freiburg
- KIT, Karlsruhe
- University of Mainz
- TU Dresden
- Heidelberg University

Great Britain:
- Imperial College London

Italy:
- INFN, Sezione LNGS
- INFN, Sezione di Bologna

Israel:
- Weizmann Institute of Science

The Netherlands:
- Nikhef, Amsterdam

Portugal:
- University of Coimbra

Sweden:
- Stockholm University

Switzerland:
- University of Zürich

USA:
- Columbia University
- UCLA
- Arizona State University
- Purdue University
- Rice University
- UCSD
- University of Chicago
- Rensselaer Polytechnic Institute

Abu Dhabi:
- New York University Abu Dhabi

- seed funding
- 2 approved ERC grants
- ExIn application
Spin Independent (SI) WIMP Interaction

tests much of the generic WIMP space of models

- a declining WIMP case w/o discovery?
- solar neutrino signal & CNNS: 200 t*yr
Neutrino Physics with DARWIN

- Coherent Neutrino-Nucleus Scattering (CNNS)
 200 t*yr → ca. 200 (25) events for > 3 (4) keV_{NR}

- Low energy solar neutrino signal: pp, \(^7\)Be
 ~1% statistical uncertainty for 100 t*yr → solar models & \(\nu\) properties

real-time measurement of the solar neutrino flux:
→ 7.2 events/day from pp
→ 0.9 events/day from \(^7\)Be

- Supernova neutrinos:
 → 5\(\sigma\) sensitivity for a 27M\(\odot\) SN progenitor at 10 kpc (~700 events)
 → flavor-insensitive neutrino energy measurement

JCAP 01, 044 (2014)
Axions and ALPS

- measurement via axio-electric effect (ER channel)
- expect mono-energetic peak at the particle mass
- moderate sensitivity to axions (weak dependence of the coupling on the exposure: $g_{Ae}^{\text{sol}} \propto (MT)^{-1/8}$)
- sensitivity to ALPs two orders of magnitude better than current limits
- dominant backgrounds: solar neutrinos and $2\nu\beta\beta$ of ^{136}Xe
0νββ with 136Xe

8.9% natural abundance

\Rightarrow 3.5 t 136Xe in 40t without enrichment!

$Q_{\beta\beta} = (2458.7 \pm 0.6)$ keV

Assume:
- 6t fiducial
- energy resolution at $Q_{\beta\beta} \sim 1%$

$\begin{align*}
8.9\% \text{ natural abundance} \\
\Rightarrow 3.5 \text{ t} \, ^{136}\text{Xe in 40t without enrichment!}
\end{align*}$

$Q_{\beta\beta} = (2458.7 \pm 0.6)$ keV

Assume:
- 6t fiducial
- energy resolution at $Q_{\beta\beta} \sim 1%$

Sensitivity @ 95% CL:
- 30 t*yr $\Rightarrow T_{1/2} > 5.6 \times 10^{26}$ yr
- 140 t*yr $\Rightarrow T_{1/2} > 8.5 \times 10^{27}$ yr

IMPORTANT: DARWIN might become a powerful, cost effective and time-wise competitive 0νββ experiment (no enrichment!)
Conclusions

Fast upgrade of XENON1T to XENONnT (mostly existing infrastructure)

- end of 2018

- low-background technology at the next level seems feasible
- all other required technological improvements should be possible

- detector scaling to the projected limits
- exciting prospects for DARWIN:
 - ‘ultimate’ discovery machine for WIMPs
 - added value: new physics topics
 - solar neutrinos
 - supernova neutrinos
 - coherent neutrino scattering
 - axions & ALPs
 - double beta decay: 0_{nbb}