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Abstract

The expansion rate of the universe had a strong
influence on the origin of the dark matter abun-
dance during the early stages of the universe’s
evolution, mainly prior to big-bang nucleosynthe-
sis. Any departure of the expansion rate of the
universe from the standard cosmological model
during that time can modify the dark matter
abundance. In this poster, I show the role played
by a scalar field on the modification of the expan-
sion rate of the universe arising from scalar-tensor
theories of gravity coupled both conformally and
disformally to matter, and also, I present how
these variations to the expansion rate would im-
pact the correlation between thermal annihilation
rate of dark matter and the 27% content of the
Universe in comparison to the standard cosmol-
ogy.

Motivation

In the standard ΛCDM scenario, DM species
with weak scale interaction cross-section freeze-
out with an abundance that matches the present
observed value. This weak interaction is re-
flected in the predicted thermally-averaged an-
nihilation cross section, 〈σv〉, which is around
3.0×10−26cm3s−1. Despite such a small value, the
Fermi-LAT and Planck experiments have been ex-
ploring upper bounds on 〈σv〉. So, our main goal
is to find out wheter the DM content can still
have a thermal origin with larger or smaller 〈σv〉
by utilising non-standard cosmology.

Scalar Tensor Theories of Gravity

These theories come from higher dimensional the-
ories. Here, gravity is mediated by both a tensor
field and a scalar field. The most general phys-
ically consistent relation between two metrics in
the presence of a scalar field is given by

g̃µν = C(φ)︸ ︷︷ ︸
Conformal

gµν + D(φ)︸ ︷︷ ︸
Disformal

∂µφ∂νφ (1)

Expansion Rate of the Universe

One can study modifications to the expansion rate
of the Universe, H̃ , for different conformal and
disformal couplings. For example, C(ϕ) = (1 +
0.1 e−8ϕ)2 [1] or more general scenarios like D =

1
M 4C [2]. See Figure 1.
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Figure 1: Left plot shows a modified expansion rate under the influence of the conformal coupling C(ϕ) = (1 + 0.1 e−8ϕ)2 [1]. The right plot shows
the effect of a pure disformal scenario where C = 1 and D = 1

M 4C [2].

Dark Matter Relic Abundance

For a DM species with mass mχ and a thermally-averaged annihilation cross-section 〈σv〉, the dark
matter abundance evolves according to the Boltzmann equation

dY

dx
= −s̃〈σv〉

xH̃

(
Y 2 − Y 2

eq

)
, (2)

where x = mχ/T̃ , H̃ is the expansion rate , Y = nχ
s̃ and s̃ = 2π

45gs(T̃ )T̃ 3 is the entropy density. Solutions
to (2) can be found using the expansion rates shown in Figure 1.
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Figure 2: Solutions of the Boltzmann equation. Left plot shows the abundance of a DM mass of 1000 GeV using the expansion rate shown in left

plot of Figure 1. Right plot shows the abundance for a DM of 100 GeV using the expansion rate corresponding to the mass scale M = 12 GeV

shown in Figure 1.

DM Annihilation Cross Section

To satisfy the dark matter content of the universe, 27 %, we found that DM annihilation cross-section
can be larger or smaller than the one predicted by standard cosmology.
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Figure 3: Annihilation cross section as function of mass. Left plot shows larger 〈σv〉 for large masses, and smaller 〈σv〉 for masses around 130 GeV

[1]. In the right plot, different curves represent different predictions according to the mass scale M [2].
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