The Future of the NA62 Experiment at CERN

Gia Khoriauli

Flavour and Dark Matter
25-28 September 2017
Heidelberg
The NA62 experiment, its main goal and the detector
- Kaon rare decays \rightarrow test of the SM
- Status of the $K^+ \rightarrow \pi^+\nu\bar{\nu}$ measurement
 - Highlights of the detector and its performance

The NA62 beam operation modes
- K^+ beam and dump

NA62 searches of New Physics at MeV-GeV scale
- Dark Photons, Axion-Like Particles, Heavy Neutral Leptons
 - Present status & future prospects

Long term future: prospects of a $K_L \rightarrow \pi^0\nu\bar{\nu}$ measurement
The NA62 Collaboration

NA62 COLLABORATION

29 institutes, more than 200 members
The NA62 Experiment

- 62nd proposed experiment in the CERN North Area
 - Successor of the NA48 experiment
 - Fixed target (Beryllium)
 - 400 GeV/c proton beam from SPS

- K$^+$ from secondary beam
 - $p_{\text{Kaon}} = 75\pm1$ GeV/c
 - Kaons decaying in flight

- 2014: first pilot run, 2015: commissioning/physics run

- 2016 physics run \Rightarrow the SM sensitivity for $K^+ \rightarrow \pi^+\nu\bar{\nu}$

- Data taking until the LHC long shutdown 2 in 2018
 - $\sim 10^{13}$ K^+ decays to be recorded in total
Golden Rare Kaon Decays

- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $K_L \rightarrow \pi^0 \nu \bar{\nu}$: very clean FCNC processes
 - SM branching ratios $\sim 10^{-10}$
 - $K_L \rightarrow \pi^0 \nu \bar{\nu}$: completely CP-violating decay

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$

$K_L \rightarrow \pi^0 \nu \bar{\nu}$

@ CERN

@ J-PARC
Relation with Unitarity Triangle

![Unitarity Triangle Diagram](image)

- New Physics models predicting different ways of violating this harmony in the two rare decays

\[
(\bar{\rho}, \bar{\eta}) \quad \alpha \\
K_L \to \pi^0 \nu \bar{\nu} \\
\gamma \quad \beta \\
(0,0) \quad (1,0)
\]

\[
\sin 2\beta \quad \epsilon_K
\]

- Alternatively, combining (III.1) and (III.15), one finds (Buras and Maniatis, 2004).

\[
\Delta m_d \quad \Delta m_s
\]

- Finally, as in the SM and more generally in all MFV models there

- It should be stressed that \(\sin^2 \theta \approx 1\) in the SM and more generally in all MFV models.

- The determination of the parameter \(\sin^2 \theta\) is determined this way depends only on two measurable branching ratios.

- As briefly discussed in Section IX and in great detail in (Ali, 2003; Buchalla, 2003;)

- The violation of this relation is much harder. As briefly discussed in

- The determination of the parameter \(\sin^2 \theta\) is determined this way depends only on two measurable branching ratios.

- As briefly discussed in Section IX and in great detail in (Ali, 2003; Buchalla, 2003;)

- The violation of this relation is much harder. As briefly discussed in

- The determination of the parameter \(\sin^2 \theta\) is determined this way depends only on two measurable branching ratios.

- As briefly discussed in Section IX and in great detail in (Ali, 2003; Buchalla, 2003;)

- The violation of this relation is much harder. As briefly discussed in
BR($K^{+,0}_L \rightarrow \pi^{+,0} \nu \bar{\nu}$) SM Predictions

Buras et al., JHEP11 (2015) 033

- \[\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (9.11 \pm 0.72) \times 10^{-11} \]
- \[\mathcal{B}(K_L \rightarrow \pi^0 \nu \bar{\nu}) = (3.00 \pm 0.31) \times 10^{-11} \]

- BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) and BR($K_L \rightarrow \pi^0 \nu \bar{\nu}$) uncertainties: 8% and 10%
 - Theory uncertainty: **only 2%**!
 - Excellent precision in flavour physics
The NA62 goal: BR($K^{+,0}_L \to \pi^{+,0}\bar{\nu}\bar{\nu}$) with 10% precision

- Theory uncertainty: only 2%!
 - Excellent precision in flavour physics

Experimental status: E787/E949 experiments at BNL

$$\text{BR}_{\text{exp}}(K^+ \to \pi^+\nu\bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$
The NA62 Detector Hall

Detector hall + target hall = 270 m
4.5 x 10^{12} K^+ decays in the fiducial region per year

@ nominal intensity of the primary proton beam: 3 x 10^{12}/pulse
NA62 Strategy of Measurement

Equation:

\[m_{miss}^2 = \left(P_{K^+} - P_{\pi^+} \right)^2 \]
NA62 Strategy of Measurement

Background
1. K^+ decay modes
2. Accidental single track matched with a K^- like track

Kaon Decays
- Accidental single tracks
- Beam interactions in the beam tracker
- Beam interactions with the residual gas in the vacuum region

Signal
- Kinematic variable:
 \[m_{\text{miss}} = P_\gamma - P_\mu \]

Under pion hypothesis

<table>
<thead>
<tr>
<th>Decay</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \mu^+ \nu_\mu$</td>
<td>63%</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi^0$</td>
<td>21%</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+ \pi\pi$</td>
<td>7%</td>
</tr>
</tbody>
</table>
Under pion hypothesis

$K^+ \rightarrow \pi^+ \pi^0(\gamma)$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ ($\times 10^{10}$)

$K^+ \rightarrow \mu^+ \nu \mu(\gamma)$

$K^+ \rightarrow e^+ \pi^0 \nu_e$

$K^+ \rightarrow \mu^+ \pi^0 \nu_\mu$

Region I

Region II

m^2_{miss} [GeV2/c4]

$\frac{d\Gamma}{\Gamma_{\text{tot}} \, dm^2_{\text{miss}}}$

10^{-1}

10^{-2}

10^{-3}

10^{-4}

10^{-5}

10^{-6}

10^{-7}
NA62 Tracking

- Silicon Pixel detector, 3 stations
 - 750 MHz total particle rate
 - Track momentum & angle resolutions: 0.2% & 16 μrad
 - Time Resolution ≈100 ps
NA62 Tracking

Silicon Pixel detector, 3 stations
- **750 MHz** total particle rate
- Track momentum & angle resolutions: **0.2% & 16 μrad**
- Time Resolution ≈ 100 ps

4 STRAW stations with ≥3-coordinates operating in vacuum – only $0.018X_0$ (total)

Deployment
- Vacuum load for the vacuum tank.
- Integration of the tracker inside the vacuum tank.
- Capability to veto events with multiple charged particles.
- Average track efficiency near 100%.
- From these constraints follow the main requirements of the detector:

CoordinateViews
- **a) x Coordinate View**
- **b) Y Coordinate View**
- **c) U Coordinate View**
- **d) A full chambers**

Chamber Dimensions
- Number of Chambers: 4
- Number of Straws per View: 1'792
- Diameter: ~10 mm
- Length: 2'160 mm

Straw Tracker Layout
- Chamber 1
 - Width: 101.2 mm
 - Height: 132.1 mm
- Chamber 2
 - Width: 101.2 mm
 - Height: 132.1 mm
- Chamber 3
 - Width: 101.2 mm
 - Height: 132.1 mm
- Chamber 4
 - Width: 101.2 mm
 - Height: 132.1 mm

Chamber 4
- Position:
 - X: 1.2 mrad (upstream of the magnet)
 - φ: 15°

Hit Time Resolution
- KTAG hit time resolution in the 2015 run.
1-track selection

- Good track originated from a Kaon decay in the fiducial volume
 - Pion track hypothesis

Figure 7: Distribution of m_{miss}^2 as a function of pion momentum for kaon events selected on control data. The signal regions (red box) in the (m_{miss}^2, p_{π}) plane are drawn for reference.

7.5 Kinematic Reconstruction Performances

The fraction of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $K^+ \rightarrow \mu^+ \nu \bar{\nu}$ events entering in the signal regions is measured using corresponding samples of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $K^+ \rightarrow \mu^+ \nu \bar{\nu}$ decays collected by the control trigger concurrently with the PNN trigger. Both selections start from kaon events. Two electromagnetic-like clusters in LKr are looked for to select $K^+ \rightarrow \pi^+ \nu \bar{\nu}$; the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay vertex is computed assuming that the clusters originated from π^0 decay and is required to be within $115 < Z_{\text{vertex}} < 165$ m. The π^0 selection is kept fully independent of K^+ and $\pi^+ \nu \bar{\nu}$ kinematic variables to avoid any bias in the reconstructed m_{miss}^2. The same criteria for particle identification (“particle ID”) and photon rejection in LAV, IRC and SAC used to select $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (see Sections 7.6, 7.8) are applied also to select $K^+ \rightarrow \mu^+ \nu \bar{\nu}$; a cut on the extra activity in LKr cleans the sample further. $K^+ \rightarrow \mu^+ \nu \bar{\nu}$ are selected requiring a hit in MUV3 associated to the track within ± 5 ns from the pion time and MIP clusters in LKr, MUV1 and MUV2. No RICH particle ID requirement is applied to the muon to avoid biasing in the kinematics. The range $115 < Z_{\text{vertex}} < 165$ m is considered in the selection of this sample. Photon rejection is applied like in $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ selection (Section 7.8).
1. track selection

- Good track originated from a Kaon decay in the fiducial volume
 - Pion track hypothesis

Figure 7: Distribution of m^2_{miss} as a function of pion momentum for kaon events selected on control data. The signal regions (red box) in the (m^2_{miss}, $p_\pi^+\pi^0$) plane are drawn for reference.

7.5 Kinematic Reconstruction Performances

The fraction of $K^+\rightarrow\pi^+\pi^0\nu\bar{\nu}$ and $K^+\rightarrow\mu^+\nu\bar{\nu}$ events entering in the signal regions is measured using corresponding samples of $K^+\rightarrow\pi^+\pi^0\nu\bar{\nu}$ collected by the control trigger concurrently with the PNN trigger. Both selections start from kaon events. Two electromagnetic-like clusters in LKr are looked for to select $K^+\rightarrow\pi^+\pi^0\nu\bar{\nu}$; the $K^+\rightarrow\pi^+\pi^0\nu\bar{\nu}$ decay vertex is computed assuming that the clusters originated from π^0 decay and is required to be within $115 < Z_{\text{vertex}} < 165$ m. The π^0 selection is kept fully independent of $K^+\rightarrow\pi^+\pi^0\nu\bar{\nu}$ and $K^+\rightarrow\pi^+\pi^0\nu\bar{\nu}$ kinematic variables to avoid any bias in the reconstructed m^2_{miss}. The same criteria for particle identification (“particle ID”) and photon rejection in LAV, IRC and SAC used to select $K^+\rightarrow\pi^+\pi^0\nu\bar{\nu}$ (see Sections 7.6, 7.8) are applied also to select $K^+\rightarrow\pi^+\pi^0\nu\bar{\nu}$; a cut on the extra activity in LKr cleans the sample further.

$K^+\rightarrow\mu^+\nu\bar{\nu}$ are selected requiring a hit in MUV3 associated to the track within ± 5 ns from the pion time and MIP clusters in LKr, MUV1 and MUV2. No RICH particle ID requirement is applied to the muon to avoid biasing in the kinematics. The range $115 < Z_{\text{vertex}} < 165$ m is considered in the selection of this sample. Photon rejection is applied like in $K^+\rightarrow\pi^+\pi^0\nu\bar{\nu}$ selection (Section 7.8).

The top-row plots in Figure 8 show the distribution of $K^+\rightarrow\pi^+\pi^0\nu\bar{\nu}$ control events with $15 < p_{\pi^+} < 35$ GeV/c in the ($m^2_{\text{miss}} (\text{No GTK})$, $m^2_{\text{miss}} (\text{RICH})$) and ($m^2_{\text{miss}} (\text{No GTK})$, $m^2_{\text{miss}} (\text{RICH})$) samples.
Summary of the Performance

- $\sim 10^4$ kinematic suppression of the background
 - GTK, STRAW

- Highly effective photon veto system, $\sim 10^8 \pi^0$ rejection
 - LAV (large angle vetos), LKr (as a medium angle veto), IRC and SAC (small angle vetos, down to 0 radian)

- $\sim 10^7$ muon suppression from particle identification with calorimeters, fast muon veto (MUV3) and RICH
 - LKr+MUVs: 10^5 muon rejection @ $\sim 80\%$ pion efficiency
 - RICH: $\sim 10^2$ muon rejection in range $15 \text{ GeV/c} < p_{\text{track}} < 35 \text{ GeV/c}$

- Good time resolution: $\sim 100 \text{ ps}$
\(K^+ \rightarrow \pi^+ \nu \bar{\nu} \) Analysis in Data 2016

- After particle ID and photon veto cuts
 - 2.3\times10^{10} K^+ decays (5% of 2016 data) used

- Expected signal: 0.064, expected background: 0.057, observed: 0 events
 - (The event in the box fails \(m^2_{\text{miss}}(\text{w/o GTK}) \) cut)
 - Signal acceptance: 3.3%
 - Will be improved
After particle ID and photon veto cuts

- **2.3×10 K⁺ decays (5% of 2016 data) used**

Expected signal: 0.064, expected background: 0.057, observed: 0 events

- (The event in the box fails $m^2_{\text{miss}(\text{w/o GTK})}$ cut)

- **Signal acceptance:** 3.3%
 - Will be improved

The SM sensitivity, BR<10⁻⁹, expected to be reached using the ~full 2016 data

Expected ~15 signal events in 2017 data
NA62 Beam Operation Modes

SPS beam and users

T2 wobbling

T4 wobbling

T6

P42

M2

Cedar

NA61

H2

H4

H6

H8

P6

K12

NA62

COMPASS
NA62 Beam Operation Modes

- 75 GeV/c K^+ beam or proton dump modes using “TAXes”
- Easily switchable modes in the current beam setup of NA62
NA62 Beam Operation Modes

- 75 GeV/c K⁺ beam or proton dump modes using “TAXes”
 - Easily switchable modes in the current beam setup of NA62

SPS beam and users

NA62 beam-line from target to decay volume

- TAXes: movable copper + iron made collimators of ~22λ, total thickness
NP Searches in Dump Mode: ALP

- Long-lived Axion-like particles created by photon fusion
 - Copper TAX \rightarrow coherent Z^2 enhancement of production rate

- ALP lifetime dependence on its mass and coupling with photon
 \[\tau \sim \frac{1}{(g_{a\gamma}^2 m_a^3)} \]

- Expected limits on the mass and coupling assuming 1 day/1 month of data taking in the dump mode
NP Searches in Dump Mode: ALP

- ~1 day NA62 data from running in dump mode already sensitive to ALPs at 90% CL
 - Large proton energy, 400 GeV
 - Long decay volume, 65 m
 - Assume 0 background
 - Rather realistic

- Dependence of the projected limits on
 - Production differential cross section of ALPs and lifetime
 - Acceptance photons in the LKr electromagnetic calorimeter
NP Searches in Dump Mode: A'

- Search for displaced di-lepton decays: $A' \rightarrow e^+ e^-, A' \rightarrow \mu^+ \mu^-$
 - 2×10^{18} protons on target (~2 years)
 - Limits at 90% CL, 0 background
 - Production only in target, no TAXes

$|A' \text{ coupling to ordinary } \gamma|^2$

- Higher sensitivity is expected considering direct QCD production of A' and dump on TAXes
Search for visible decays of long-lived HNL → πe, πμ

- Limits depend on the relation of HNL couplings with the SM leptons, $U_e:U_\mu:U_\tau$
- 2×10^{18} protons on target (~2 years)
- Limits at 90% CL, 0 background
NA62 in Run 2, 3 and 4

- Run 2: K^+ beam for $K^+ \rightarrow \pi^+ \nu\bar{\nu}$, dark photon, HNL, LNV/LFV decays

- Run 3: many interesting fields to be studied with minimal (or no upgrades at all) of the existing setup
 - In K^+ beam mode:
 - If needed improve $K^+ \rightarrow \pi^+ \nu\bar{\nu}$, $A' \rightarrow$ invisible, HNL single track decays
 - All benefit from the same trigger signature
 - In proton dump mode:
 - ALPs, $A' \rightarrow$ visible, HNL

- Run 4: there are some ideas...
KLEVER for $K_L \rightarrow \pi^0 \nu \bar{\nu}$ Measurement

- Complementary search of KOTO with the high energy of π^0, $p_{\pi^0} = 70$ GeV/c
 - ~60 Standard Model events in 5 years of running
 - 5x10^{19} protons on target
 - Boosted photons from $K_L \rightarrow \pi^0\pi^0$ decays (main background), easy for vetoing

- New large angle photon veto (LAV) detectors
Summary

- NA62 experiment at CERN to measure K^+ rare (BR $\sim 10^{-11}$) decay $K^+ \rightarrow \pi^+\bar{\nu}\bar{\nu}$

- High energy & intensity proton beam + long decay volume & advanced detector system \rightarrow NA62 as a very powerful tool to search for hidden sector particles
 - Dark photon, Axion-like particles, Heavy neutral leptons
 - MeV to GeV mass range, weak coupling with the SM
 - Visible and invisible decays

- Operation in K^+ beam or proton beam dump mode
 - Easy to switch between the modes
 - Both modes considered after the long shutdown 2 (2021)

- Possible long term future: measurement of $K_L \rightarrow \pi^0\nu\bar{\nu}$
 - $K_{L\text{EVE}}$: modified beam-line, upgraded detector
 - After long shutdown 3 (2027)
 - The experiment logo will be changed
Amplitude $\sim m^2_{u,c,t} / m^2_W \rightarrow$ short-distance dynamics
- Negligible up-quark contribution
- Effective theory framework for calculation of the decay amplitude

$$H_{\text{eff}}^{\text{SM}} = \frac{G_F}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} \sum_{l=e,\mu,\tau} \left(V_{cs}^* V_{cd} X_{\text{NL}}^l + V_{ts}^* V_{td} X(x_t) \right) \left(\bar{s}d \right)_{V-A} \left(\bar{\nu}_l \nu_l \right)_{V-A}$$

- Theoretically calculable X_{NL}^l and $X(x_t)$ loop functions
 - Remarkable progress over the last decade
Photon Rejection with Vetos

- \(K^+ \rightarrow \pi^+\pi^0 \) selection requiring 2\(\gamma \) in LKr compatible with \(\pi^0 \)
 - No photons in other sub-detectors

![Graph showing \(\sigma(m^2_{\text{miss}})[\text{GeV}^2/c^4] \) as a function of \(p_{\pi^+} [\text{GeV}/c] \)]

- Data
- Analytical interpolation
- Contribution from \(P_{\pi^+} \)
- Contribution from \(\theta_{\pi^+} \)
- Contribution from \(P_K \)
- Contribution from \(\theta_K \)

NA62 Preliminary

Data 2016

\(\sigma(m^2_{\text{miss}})[\text{GeV}^2/c^4] \)

- \(10 \) to \(55 \text{ GeV}/c \)
- \(0 \) to \(2 \times 10^{-3} \)
Performance of RICH

- $\sim 10^2$ muon suppression factor
 - $15 \text{ GeV} / c < p_{\text{track}} < 35 \text{ GeV} / c$

NA62 preliminary 2015 data
Calorimeter Performance

- Total energy = LKr + MUV1 + MUV2

- 10^5 muon rejection is reached at 80% pion efficiency
 - On-going study to increase the efficiency up to 90%
NA62 Sensitivity to $\text{BR}(K^+ \rightarrow \pi^+\nu\bar{\nu})$

- Monte-Carlo simulation
 - 10% signal acceptance

<table>
<thead>
<tr>
<th>Decay</th>
<th>SM events/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+ \rightarrow \pi^+\nu\bar{\nu}$</td>
<td>45</td>
</tr>
<tr>
<td>$K^+ \rightarrow \mu^+\nu\mu(\gamma)$</td>
<td>1.5</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\pi^0(\gamma)$</td>
<td>7.5</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\pi^+\pi^-$</td>
<td><1</td>
</tr>
<tr>
<td>Others</td>
<td><1</td>
</tr>
<tr>
<td>Σ background</td>
<td>$<$10</td>
</tr>
</tbody>
</table>

- 10% precision after 2 years of data taking
NP Searches with K^+ Beam: A'

- Dark Photon: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma A'$ and $A' \rightarrow \chi \chi$
 - Same trigger signature as the $K^+ \rightarrow \pi^+ \nu\bar{\nu}$ decays

$$M_{miss}^2 = (P_K - P_\pi - P_\gamma)^2$$

- Minimum bias data: 2 γ on LKr, simulate 1γ loss
- MC:
 - $m_{A'} = 30$ MeV
 - $m_{A'} = 60$ MeV
 - $m_{A'} = 90$ MeV

- Improved limits at 90% CL (preliminary) in DP mass range: ~ 50 MeV/c$^2 < m_{A'} < 90$ MeV/c2
 - Data used: 1.5×10^{10} K^+ decays (small fraction of 2016 sample)
NP Searches with K^+ Beam: HNL

- Heavy Neutrino from Neutrino Minimal SM (νMSM)
 - Three right-handed neutrinos: the lightest N_1 – dark matter candidate

$$|U_{l4}|^2 = \frac{\mathcal{B}(K^+ \to l^+ N)}{\mathcal{B}(K^+ \to l+\nu_l) \rho_l(m_N)}$$

- $K^+ \to \mu^+ N$: NA62 2007 data (arXiv:1705.07510)
- $K^+ \to e^+ N$: NA62 2015 data (paper in preparation)
 - Improved limits on $|U_{e4}|^2$ in the m_N range ~ 170 MeV/c2 – 450 MeV/c2

See Letizia Peruzzo’s talk on Monday