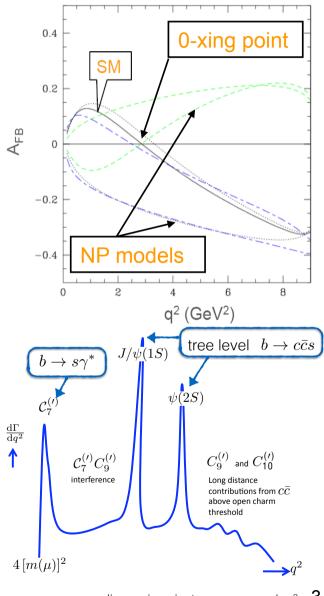
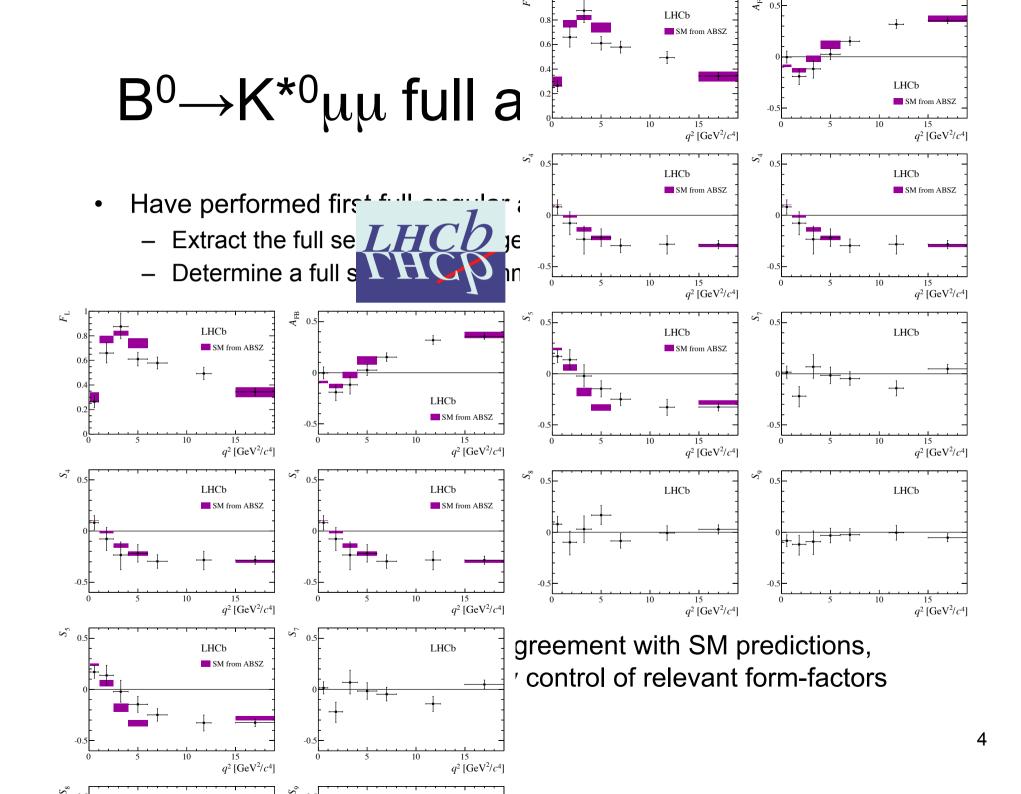

B anomalies at LHCb

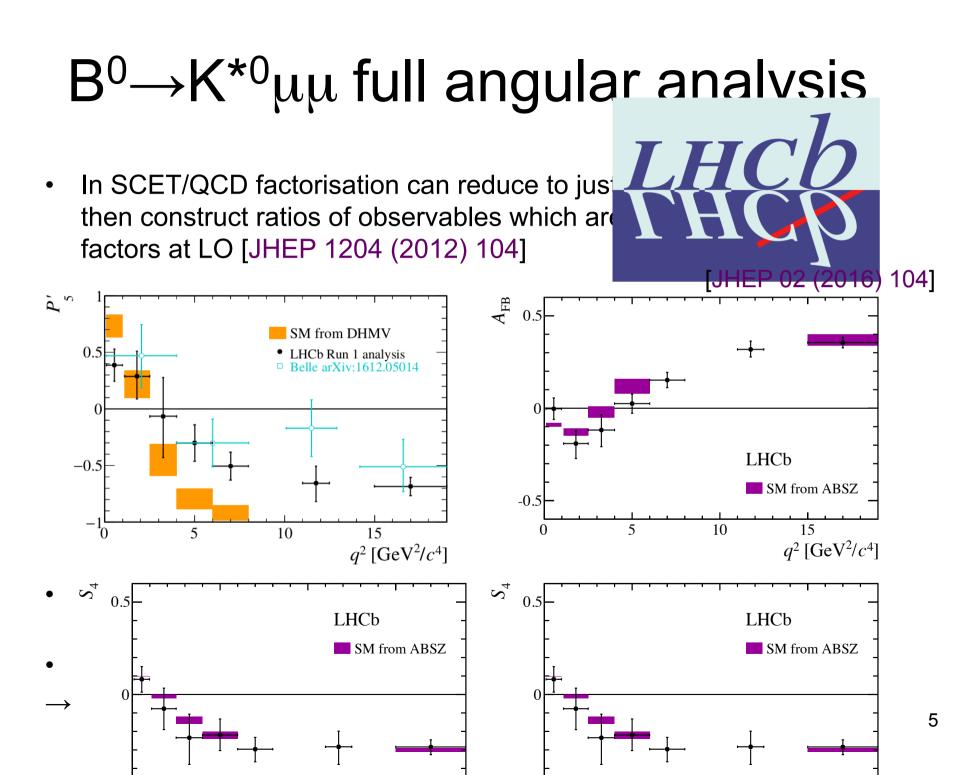
Flavour and Dark Matter, 28th September 2017 Mitesh Patel (Imperial College London) on behalf of the LHCb collaboration

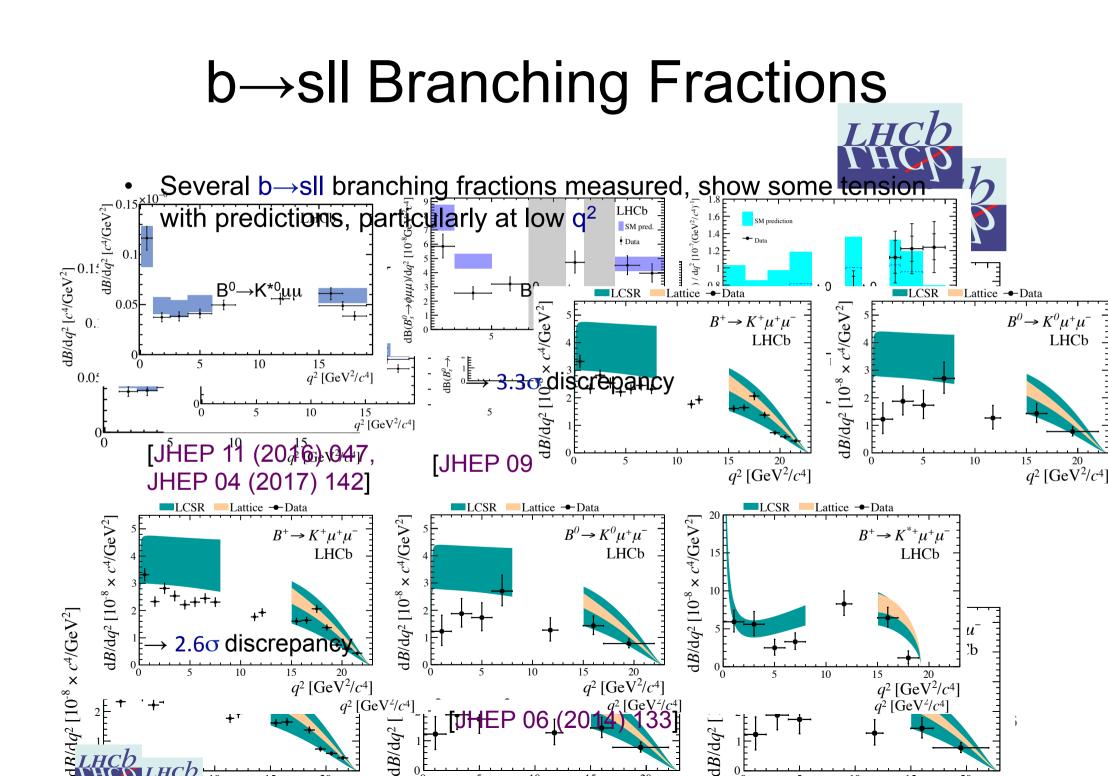
Imperial College London

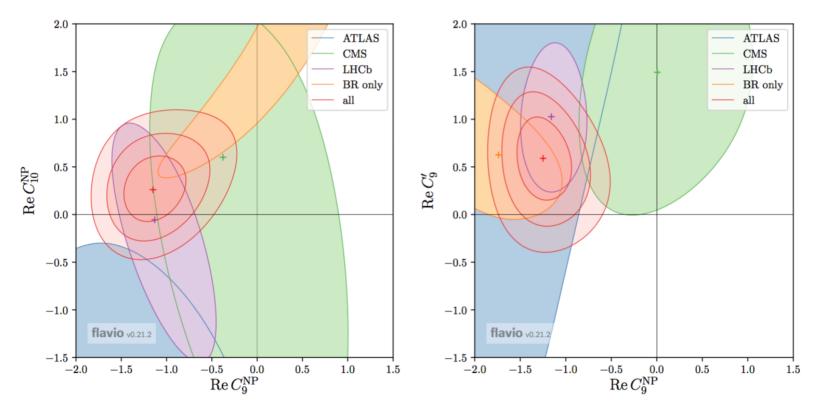


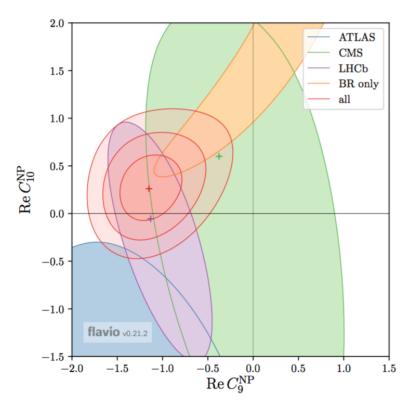

Introduction

- Interesting set of anomalies have appeared in measurements made at the LHCb experiment :
 - Angular observables in $B^0 {\rightarrow} K^{*0} \mu \mu$
 - Branching fractions of several $b \rightarrow sll$ decays
 - Lepton-flavour universality in $b \rightarrow sll$ decays
 - Lepton-flavour universality in $b \rightarrow clv$ decays
- Extent of discrepancies depends on several theoretical issues – will try and highlight some of these

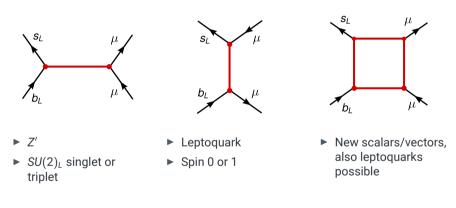

Rare decays – b→sll


- b→sll decays involve flavour changing neutral currents → loop process
- At LHCb, best studied decay $B^0 \rightarrow K^{*0} \mu \mu$
- Large number of observables: BF, A_{CP} and angular observables – dynamics can be described by three angles (θ_I, θ_K, φ) and di-μ invariant mass squared, q²
- Try to use observables where theoretical uncertainties cancel e.g. Forward-backward asymmetry A_{FB} of θ_{I} distribution
- Interpreted in effective field theory describing couplings (C) of photon (O₇), vector (O₉) and axial-vector (O₁₀) operators





 Several groups have interpreted results by performing global fits to b→sll data e.g. [arXiv:1704.05340, EPJC(2017)77:377]

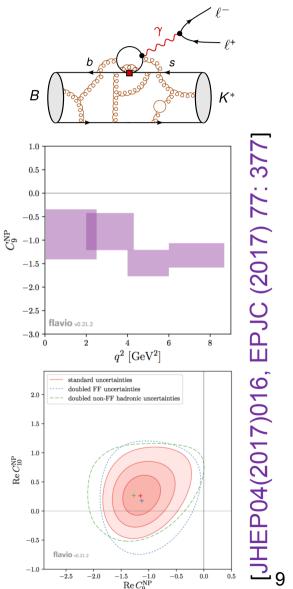


Consistent picture, tensions solved simultaneously by a modified vector coupling (ΔC₉ != 0) at >3σ

 Several groups have interpreted results by performing global fits to b→sll data e.g. [arXiv:1704.05340, EPJC(2017)77:377]

Discrepancies have got enough interest st model builders have started to step-in...

For a review see, *e.g.* D.Straub @ Instant workshop on B meson anomalies


Consistent picture, tensions solved simultaneously by a modified vector coupling (ΔC₉ != 0) at >3σ

- Community have started to look critically at the theory predictions in particular, the O_{1,2} operators have a component that could mimic a NP effect in C₉ through cc loop
- Effect can be parameterised as function of three helicity amplitudes, h₊₋₀ [EPJC (2017) 77: 377]
 - Absorb effect of these amplitudes into a helicity dependent shift in C₉,

 $C_9^{SM} + \Delta C_9^{+-0}(q^2)$ cf. $C_9^{SM} + \Delta C_9^{NP}$

Look for q^2 and helicity dependence of shift in C_9

- "The absence of a q² and helicity dependence is intriguing, but cannot exclude a hadronic effect as the origin of the apparent discrepancies"
- Recent 1st NLO calculation of contribution includes phases between long and shortdistance amplitudes for 1st time

 K^*

0

Ò

C^{MSC} SO

HEP04(

<u>ر</u> 10

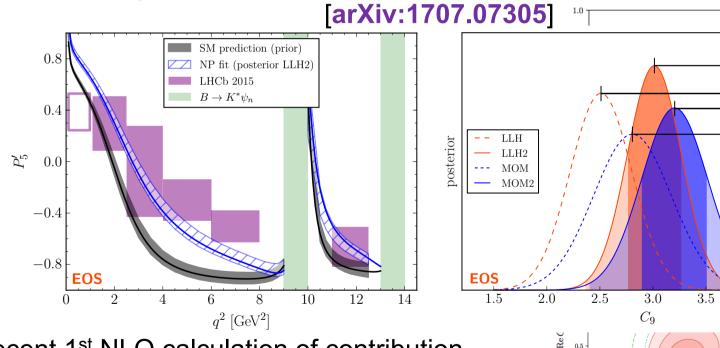
4.0

0.0

-0.5

-1.0

flavio v0.21.2

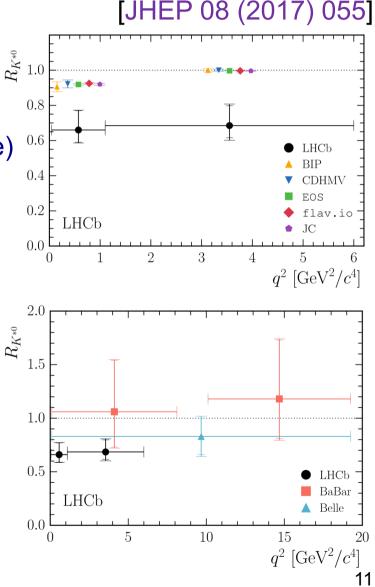

-2.5 -2.0

 $-1.5 -1.0 \\ \text{Re} C_0^{\text{NP}}$

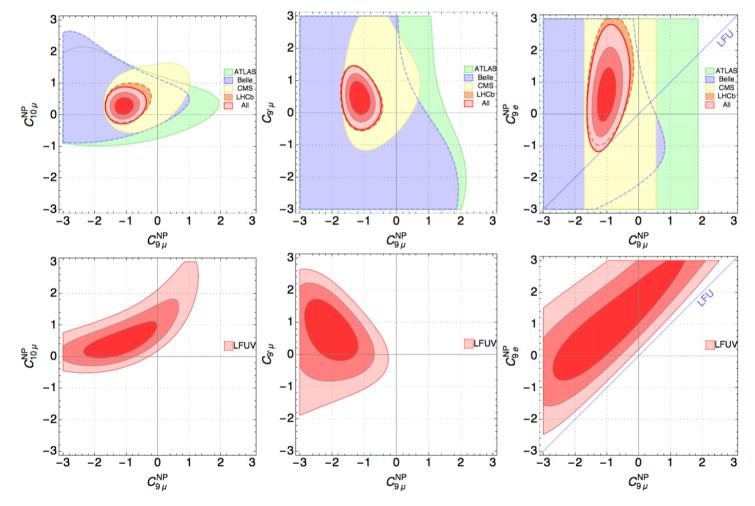
-0.5 0.0

4.5

Community have started to look critically at the theory predictions – in particular, the O_{1,2} operator has a component that could mimic a P NP effect in C₉ through cc loop

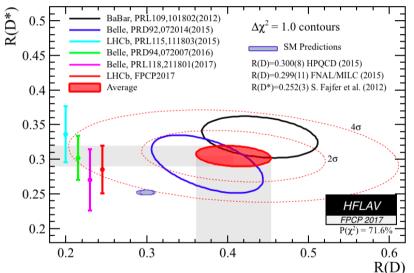

 Recent 1st NLO calculation of contribution includes phases between long and shortdistance amplitudes for 1st time

Lepton universality with loop decays


- Whatever hadronic uncertainties affect b→sll decays, they should cancel in the ratio of branching fractions R_{K*0,K} = B(B^{0,+}→K^{*0,+}μμ) / B(B^{0,+}→K^{*0,+}ee)
- LHCb measurement of R_{K} is 2.6 σ below SM prediction [PRL 113 (2014) 151601] and consistent with $\Delta C_{9}^{ee}=0$, $\Delta C_{9}^{\mu\mu}=-1$
- Recent R_{K*} measurement
 - low q² : 2.1-2.3 σ below SM prediction
 - Central q² : 2.4-2.5 σ below SM prediction

(depending on theory prediction used) – further increases discrepancy

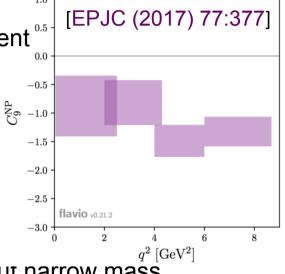
[JHEP 08 (2017) 055]



• Adding the LFU measurements in, the size of the discrepancy $\rightarrow 5\sigma$ but community still reluctant to call this NP [arXiv:1704.05340]

Lepton universality with tree decays

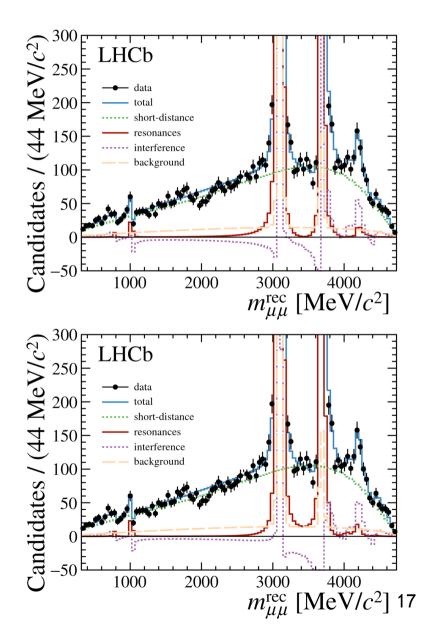
- An anomalous effect is also seen in the ratio of **tree-level** BF $R_D^*=B(B^0 \rightarrow D^{*+}\tau v)/B(B^0 \rightarrow D^{*+}\mu v)$
- LHCb analyses reconstruct the tau using τ→μvv decays [PRL115 (2015) 111803] and τ→3πv decays [arXiv: 1708.08856]
- Confirms effect seen in R_D, R_{D*} at BaBar/Belle, HFLAV combined significance now 4.1σ



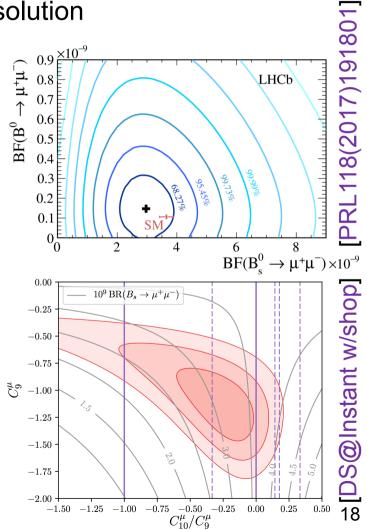
- LQ models exist that are able to explain $R_K,\,R_{D^*}$ (and $(g\mathcal{-}2)_{\mu})\,$ [PRL 116 (2016) 141802]

Ideas for the future

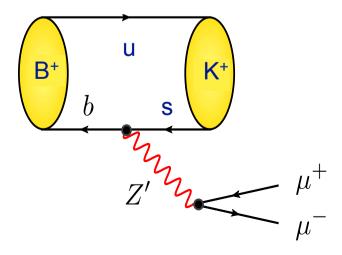
Near term prospects

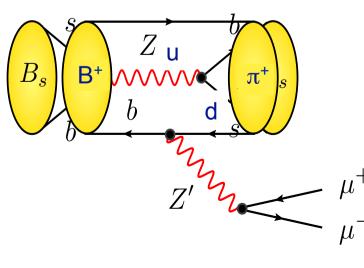

- All of the measurements discussed will be updated with the first part of the Run II dataset (2015, 16 data)
 - − $B^0 \rightarrow K^{*0} \mu \mu$ angular analysis: expect $\sim \sqrt{2}$ improvement ^{0.5} in precision
 - R_{K} : expect factor ~1.8 improvement in precision
 - R_{K^*} : expect factor ~1.5 improvement in precision
- New related measurements also in preparation:
 - R_{ϕ} : suppressed by $f_s/f_d \sim 0.25$ and $B(\phi \rightarrow K^+K^-)=\frac{1}{2}$ but narrow mass window, absences of $\phi\pi$ resonances will reduce backgrounds
 - K^{*0}ee angular analysis will enable to form ratios of angular observables
- LHCb measurement of (R_D, R_{D*}) in preparation. Will also perform measurements with other b-hadrons e.g. B_s, B_c and Λ_b

Longer term prospects


Controlling $c\overline{c}$ effects in $B^0 \rightarrow K^{*0}\mu\mu$

- At low q², ΔC₉⁺⁻⁰(q²) term arises mainly from interference penguin decay and J/ψ
 - Measure phase of interference by fitting differential rate (and angles)
- Such a fit has been performed for B⁺→K⁺μ⁺μ⁻ [EJPC (2017) 77:161], considerably more complex for B⁰→K^{*0}μμ but principle the same
- Based on a simple model, LHCb will be able to measure the magnitude and phase of resonant contributions


$B^0 \rightarrow \mu^+ \mu^-$ analysis


- Single-particle explanations of anomalies predict $C_9^{NP} = -C_{10}^{NP}$, global fits are still compatible with such a solution
- If this were the case would expect to see effect in $B(B^0 \rightarrow \mu^+ \mu^-)$ decays
- Latest LHCb measurement
 - $B_s^0 \rightarrow \mu^+ \mu^-$ established at 7.8 σ
 - − $B(B_d^0 \rightarrow \mu^+ \mu^-) < 3.4 \times 10^{-10} @ 95\% CL$
 - − LHCb/CMS combination found $B_d^0 \rightarrow \mu^+ \mu^$ evidence at 3.2σ
- No evidence for any deviation from SM so far... but this measurement will be important for the future

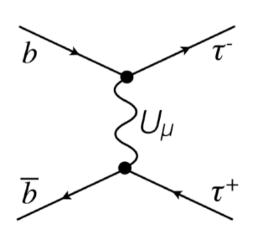
LFU in suppressed decays

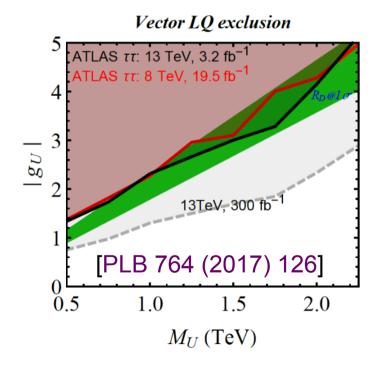
- Can try and compare b \rightarrow s and b \rightarrow d transitions e.g. to see if $R_{K} = R_{\pi}$
- Run I + Run II data set would give γ $\pi^+\mu^+\mu^-$ ev \rightarrow with $R_K = R_{\pi}$ expect 50 $\pi^+e^+e^-$ evelocities in the set of the
- With a leptoquark could presumably get NP tiagram with different b→d suppression and/or different lepton flavours
- Effort starting on (K,K*, ϕ)eµ searches; even some effort on µ τ and $\tau\tau$ modes

LFU in suppressed decays

- Can try and compare b \rightarrow s and b \rightarrow d transitions e.g. to see if $R_{K} = R_{\pi}$
- Run I + Run II data set would give ~500 π⁺μ⁺μ⁻ events
 → with R_K=R_π expect 50 π⁺e⁺e⁻ events might be able to see decay
- With a leptoquark could presumably get NP diagram with different b→d suppression and/or different lepton flavours
- Effort starting on (K,K*, ϕ)eµ searches; even some effort on µ τ and $\tau\tau$ modes

Semileptonic decays


- Most stringent tests of LFU involve only 1st-2nd generation quarks/ leptons
- Can conceive NP models where LFU is violated more in processes involving 3rd generation quarks/leptons
 - Constraints on $\Gamma(b \rightarrow c\mu v)/\Gamma(b \rightarrow cev)$ from B-factories are relatively weak ... can compete at LHCb?
 - Would expect breaking of LFU in charged currents to be universal on the quark side for $b \rightarrow c$ and $b \rightarrow u$... can test this?


$$BR(B \rightarrow D^*\tau v)/BR_{SM} = BR(B \rightarrow D\tau v)/BR_{SM} = BR(\Lambda_b \rightarrow \Lambda_c \tau v)/BR_{SM} = ...$$
$$= BR(B \rightarrow \pi \tau v)/BR_{SM} = BR(\Lambda_b \rightarrow p \tau v)/BR_{SM} = BR(B_u \rightarrow \tau v)/BR_{SM}$$
$$= ...$$

N.B.:
$$BR(B_u \rightarrow \tau v)^{exp}/BR_{SM} = 1.31 \pm 0.27$$
 UTfit. '16

Semileptonic decays

- $R_D, R_{D^*} \rightarrow NP$ scale <2TeV (or remove CKM suppression in NP)
- Given low mass-scale, direct searches will be able to search for any mediator of these anomalies e.g. ATLAS Z' →ττ search recast to look for leptoquark

Conclusions

- Interesting set of anomalies observed in B decays at LHCb given experimental precision and theoretical uncertainties, none of them are yet compelling IMHO
- Near-term updates should clarify the experimental situation and can help constrain some of the theoretical issues
- Wide range of measurements will be added to broaden the constraints on any new physics
- Full Run-II dataset will give a factor ~5 more statistics than Run-I on timescale that Belle-2 will start physics running