

Be careful. It contains kaon physics that can harm your model

It contains g-2 which is prejudicial to heavy particles

Use it (dark matter) with care because flavor physics might kill the model

Flavor and Dark Matter Workshop

Dark Matter in a Two Higgs Doublet Model

Farinaldo Queiroz Max Planck Institute fur Kernphysik - Heidelberg

Based on: arxiv: 1705.05388, 1710.XXXXX

WIMPs

Sterile Neutrinos

Axions

Minimal Flavor Violation

Rare B decays

R_K

Seesaw type I, II, III

Radiative Seesaw

Inverse Seesaw

Take Home Message

2HDM guided by Gauge Principles that address:

Dark Matter Neutrino Masses Flavor SM works fine with one Higgs doublet

But, what if there is another higgs doublet in nature...

The W and Z masses limit the type of higgs doublets in nature

$$\rho = \frac{\sum_{i=1}^{n} \left[I_i \left(I_i + 1 \right) - \frac{1}{4} Y_i^2 \right] v_i}{\sum_{i=1}^{n} \frac{1}{2} Y_i^2 v_i} \longrightarrow \mathbf{Y} = \pm 1$$

SM works fine with one Higgs doublet

But, what if there is another higgs doublet in nature...

General Scalar Potential

$$V\left(\Phi_{1},\Phi_{2}\right) = m_{11}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{22}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \left(m_{12}^{2}\Phi_{1}^{\dagger}\Phi_{2} + h.c.\right) + \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{2}^{\dagger}\Phi_{2}\right) + \lambda_{4}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)\left(\Phi_{2}^{\dagger}\Phi_{1}\right) + \left[\frac{\lambda_{5}}{2}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{6}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{1}^{\dagger}\Phi_{2}\right) + \lambda_{7}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)\left(\Phi_{1}^{\dagger}\Phi_{2}\right) + h.c.\right]$$

General Yukawa Lagrangian

$$-\mathcal{L}_{Y_{2\text{HDM}}} = y^{1d}\bar{Q}_L\Phi_1 d_R + y^{1u}\bar{Q}_L\widetilde{\Phi}_1 u_R + y^{1e}\bar{L}_L\Phi_1 e_R + y^{2d}\bar{Q}_L\Phi_2 d_R + y^{2u}\bar{Q}_L\widetilde{\Phi}_2 u_R + y^{2e}\bar{L}_L\Phi_2 e_R + h.c.,$$

$$\Phi_1 \rightarrow -\Phi_1, \ \Phi_2 \rightarrow +\Phi_2$$

Ad hoc: to suppress flavor changing Interactions

New 2HDM: arxiv: 1705.05388-

Can we solve the flavor problem by gauge principles?

Can we generate neutrino masses by gauge principles?

Can we have a plausible dark matter candidate via gauge principles?

Can we have all these at once?

YES WE CAN!

Neutrino masses and absence of FCNI in the 2HDM from Gauge Principles

2HDM + U(1) gauge symmetry

Two Higgs Doublet Models free from FCNI

1 W 11166 D 0 4 5 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1								
Fields	u_R	d_R	Q_L	L_L	e_R	N_R	Φ_2	Φ_1
Charges	u	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$	$\frac{5u}{2} + \frac{7d}{2}$
$U(1)_A$	1	-1	0	0	-1	1	1	-1
$U(1)_B$	-1	1	0	0	1	-1	-1	1
$U(1)_C$	1/2	-1	-1/4	3/4	0	3/2	3/4	9/4
$U(1)_D$	1	0	1/2	-3/2	-2	-1	1/2	5/2
$U(1)_E$	0	1	1/2	-3/2	-1	-2	7/2	-1/2
$U(1)_F$	4/3	2/3	1	-3	-4	-8/3	1/3	17/3
$U(1)_G$	-1/3	2/3	1/6	-1/2	0	-1	-1/2	-3/2
$U(1)_{B-L}$	1/3	1/3	1/3	-1	-1	-1	0	2
$U(1)_Y$	2/3	-1/3	1/6	-1/2	-1		1/2	$\neq h_2$
$U(1)_N$	0	0	0	0	0		0	$\neq h_2$

Neutrino masses and absence of FCNI in the 2HDM from Gauge Principles

2HDM + U(1) gauge symmetry

Two Higgs Doublet Models free from FCNI

Fields	u_R	d_R	Q_L	L_L	e_R	N_R	Φ_2	Φ_1
Charges	u	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$	$\frac{5u}{2} + \frac{7d}{2}$
$U(1)_A$	1	-1	0	0	-1	1	1	-1
$U(1)_B$	-1	1	0	0	1	-1	-1	1
$U(1)_C$	1/2	-1	-1/4	3/4	0	3/2	3/4	9/4
$U(1)_D$	1	0	1/2	-3/2	-2	-1	1/2	5/2
$U(1)_E$	0	1	1/2	-3/2	-1	-2	7/2	-1/2
$U(1)_F$	4/3	2/3	1	-3	-4	-8/3	1/3	17/3
$U(1)_G$	-1/3	2/3	1/6	-1/2	0	-1	-1/2	-3/2
$U(1)_{B-L}$	1/3	1/3	1/3	-1	-1	-1	0	2
$U(1)_Y$	2/3	-1/3	1/6	-1/2	-1		1/2	$\neq h_2$
$U(1)_N$	0	0	0	0	0		0	$\neq h_2$

This 2HDM has no pseudoscalar!

This is a key distinction to the canonical 2HDM

HOW can we have all these at once?

Flavor Problem

Discrete Symmetry Generated via U(1) breaking

Neutrino Masses

$$-\mathcal{L} \supset y_{ij}^D \overline{L}_{iL} \widetilde{\Phi}_2 N_{jR} + Y_{ij}^M \overline{(N_{iR})^c} \Phi_s N_{Rj}$$

Seesaw mechanism

$$(\nu N) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu \\ N \end{pmatrix}$$

Dark Matter

Vector-like fermion under U(1)

Heavy Higgs Searches Pheno 1

$$m_s^2 = \lambda_s v_s^2,$$

$$m_h^2 = \frac{1}{2} \left(\lambda_1 v_1^2 + \lambda_2 v_2^2 - \sqrt{(\lambda_1 v_1^2 - \lambda_2 v_2^2)^2 + 4(\lambda_3 + \lambda_4)^2 v_1^2 v_2^2} \right) \longrightarrow \text{ New light scalar lighter than 125GeV}$$

$$m_H^2 = \frac{1}{2} \left(\lambda_1 v_1^2 + \lambda_2 v_2^2 + \sqrt{(\lambda_1 v_1^2 - \lambda_2 v_2^2)^2 + 4(\lambda_3 + \lambda_4)^2 v_1^2 v_2^2} \right) \longrightarrow$$

SM Higgs is the heavy scalar!

Usually bounds on 2HDM are expressed with this plot

> In our model we need much more!

Pheno 2 Light Higgs Searches

Higgs Associated Production at LEP- light higgs searches

Pheno 2 Light Higgs Searches

Higgs Associated Production at LEP

vertex	coupling constant
$H t\bar{t}, H b\bar{b}, H \tau\bar{\tau}$	$\frac{\sin \alpha}{\sin \beta}$
HWW, HZZ	$\cos(\beta - \alpha)$
$h t \bar{t}, h b \bar{b}, h \tau \bar{\tau}$	$\frac{\cos \alpha}{\sin \beta}$
hWW, hZZ	$\sin(\beta - \alpha)$

$$\sigma(Zh)/\sigma(ZH_{SM})BR(h \to \text{inv})$$

$$\Gamma_{h\to Z'Z'} = \frac{g_Z^2}{128\pi} \frac{m_h^3}{m_Z^2} (\delta \tan \beta)^4 \left(\frac{\cos^3 \beta \cos \alpha - \sin^3 \beta \sin \alpha}{\cos \beta \sin \beta} \right)^2$$

$$\Gamma_{h \to b\bar{b}} = \frac{3m_b^2 m_h}{8\pi v^2} \left(\frac{\cos \alpha}{\sin \beta}\right)^2.$$

2HDM Type I ($m_h < m_H$)

Pheno 3 Higgs Physics

Higgs Properties as measured by the LHC. Thanks to Higgs Working group!

branching ratio	error
5.84×10^{-1}	1.5%
2.89×10^{-2}	6.5%
8.18×10^{-2}	4.5%
2.62×10^{-1}	2%
2.14×10^{-1}	2%
6.27×10^{-2}	2%
2.18×10^{-4}	2%
2.27×10^{-3}	2.6%
1.5×10^{-3}	6.7%
2.745×10^{-4}	2%
1.05×10^{-4}	2%
	5.84×10^{-1} 2.89×10^{-2} 8.18×10^{-2} 2.62×10^{-1} 2.14×10^{-1} 6.27×10^{-2} 2.18×10^{-4} 2.27×10^{-3} 1.5×10^{-3} 2.745×10^{-4}

$$\Gamma(H \to ZZ') = \frac{g_Z^2}{64\pi} \frac{(M_H^2 - M_Z^2)^3}{M_H^3 M_Z^2} \delta^2 \tan \beta^2 \sin^2(\beta - \alpha)$$

$$\Gamma(H \to Z'Z') = \frac{g_Z^2}{128\pi} \frac{M_H^3}{M_Z^2} \delta^4 \tan \beta^4 \left(\frac{\cos^3 \beta \sin \alpha + \sin^3 \beta \cos \alpha}{\cos \beta \sin \beta} \right)^2$$

Z' is a gauge boson lighter than the Z

If you have a light Z' that mixes with the Z the precise measurements on the Higgs properties may lead to the strongest bound on the Z-Z' mass mixing

$$\delta^2 \le \frac{4.6 \times 10^{-6}}{BR(Z' \to l^+ l^-) \sin^2(\beta - \alpha) \tan \beta^2}$$

The Higgs offers a powerful probe to new physics

Pheno 4 Meson Physics

Kaon Decays come into play

BR(
$$K^+ \to \pi^+ e^+ e^-$$
)_{exp} = $(3.00 \pm 0.09) \times 10^{-7}$,
BR($K^+ \to \pi^+ \mu^+ \mu^-$)_{exp} = $(9.4 \pm 0.6) \times 10^{-8}$,
BR($K^+ \to \pi^+ \nu \bar{\nu}$)_{exp} = $(1.7 \pm 1.1) \times 10^{-10}$.

$$BR(K^+ \to \pi^+ Z') \simeq 4 \times 10^{-4} \, \delta^2$$

Very strong Constraint!

$$\delta \lesssim \frac{2 \times 10^{-2}}{\sqrt{BR(Z' \to l^+ l^-)}},$$

$$\delta \lesssim \frac{7 \times 10^{-4}}{\sqrt{BR(Z' \to \text{missing energy})}}.$$

Pheno 5 Atomic Parity Violation

Atomic Parity Violation

Instead of search for new processes or particles directly

Determine weak charge Q_W from atomic parity violation studies and compare the result with Standard Model

prediction

High energies

Experiment	$\langle Q \rangle$	$\sin^2 \theta_W(m_Z)$	Bound on dark Z (90% CL)
Cesium APV	$2.4~{ m MeV}$	0.2313(16)	$\varepsilon^{2} < \frac{39 \times 10^{-6}}{\delta^{2}} \left(\frac{m_{Z_{d}}}{m_{Z}}\right)^{2} \frac{1}{K(m_{Z_{d}})^{2}}$
E158 (SLAC)	160 MeV	0.2329(13)	$\varepsilon^2 < \frac{62 \times 10^{-6}}{\delta^2} \left(\frac{(160 \text{ MeV})^2 + m_{Z_d}^2}{m_Z m_{Z_d}} \right)^2$
Qweak (JLAB)	170 MeV	±0.0007	$\varepsilon^2 < \frac{7.4 \times 10^{-6}}{\delta^2} \left(\frac{(170 \text{ MeV})^2 + m_{Z_d}^2}{m_Z m_{Z_d}} \right)^2$
Moller (JLAB)	75 MeV	±0.00029	$\varepsilon^2 < \frac{1.3 \times 10^{-6}}{\delta^2} \left(\frac{(75 \text{ MeV})^2 + m_{Z_d}^2}{m_Z m_{Z_d}} \right)^2$
MESA (Mainz)	50 MeV	±0.00037	$\varepsilon^2 < \frac{2.1 \times 10^{-6}}{\delta^2} \left(\frac{(50 \text{ MeV})^2 + m_{Z_d}^2}{m_Z m_{Z_d}} \right)^2$

Master Formula

Kinetic mixing

. Mass mixing

Fermions charged under U(1)

$$\left| 73.16\delta^{2} - 220\delta \left(\epsilon \frac{M_{Z}}{m_{Z}'} \right) \sin \theta_{W} \cos \theta_{W} - \delta^{2} \frac{188(q+u)}{Q_{x1} \cos_{\beta}^{2} + Q_{x2} \sin_{\beta}^{2}} \right.$$

$$\left. - \left. \delta^{2} \frac{211(q+d)}{Q_{x1} \cos_{\beta}^{2} + Q_{x2} \sin_{\beta}^{2}} \left(1 - \frac{l-e}{Q_{x1} \cos_{\beta}^{2} + Q_{x2} \sin_{\beta}^{2}} \right) \right| \times K(Cs) < 0.6.$$

Pheno 6 Neutrino-electron Scattering

Bound on the gauge couplings x Z' mass

In the context of 2HDM with a B-L symmetry

Experiment	Type of neutrino	$\langle E_{\nu} \rangle$	T
TEXONO-NPCGe [110]	$ar{ u}_{ m e}$	$1-2~{ m MeV}$	$0.35{-}12 \text{ keV}$
TEXONO-HPGe [111, 112]	$ar{ u}_{ m e}$	$1{-}2~{ m MeV}$	12-60 keV
TEXONO-CsI(Tl) [113]	$ar{ u}_{ m e}$	$1{-}2~{ m MeV}$	$3-8~\mathrm{MeV}$
LSND [114]	$ u_{ m e}$	$36~{ m MeV}$	$18-50~\mathrm{MeV}$
BOREXINO [115]	$ u_{ m e}$	$862~\mathrm{keV}$	$270{-}665~\mathrm{keV}$
GEMMA [116]	$ar{ u}_{ m e}$	$1{-}2~{ m MeV}$	3-25 keV
CHARM II [117]	$ u_{\mu}$	$23.7~{ m GeV}$	$3-24~{\rm GeV}$
CHARM II [117]	$ar{ u}_{\mu}$	$19.1~{\rm GeV}$	$3-24~{\rm GeV}$

Pheno 5 Dark Matter in a 2HDM guided by Gauge Principles

Relic density: Thermal production

Direct Detection: dark matter-electron scattering

TEXONO: Neutrino-electron scattering

APV: Atomic Parity Violation using Cesium

50 MeV dark matter, gBL ~1

2HDM amenable to a multitude of constraints while addressing:

Dark matter, neutrino masses, minimal flavor violation