

Displaced vertices from heavy neutrinos at the LHC

Luigi Delle Rose Rutherford Appleton Laboratory and University of Southampton

FLAVOUR AND DARK MATTER Heidelberg, 25 September 2017

E. Accomando, LDR, S. Moretti, E. Olaiya, C. Shepherd-Themistocleous arXiv:1612.05977, arXiv:1708.03650

Outline

- Heavy neutrino decay and production modes
 - Model realisations
 - BR and cross section estimates

- Signatures at the LHC
 - Displaced vertices

Conclusions

A minimal Z' model

A very common scenario naturally accounting for heavy neutrinos

Figure 3. Gauge sector $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'$

the gauged B-L is an appealing example

- Fermion sector SM-singlet right-handed neutrinos ν_R required by anomaly cancellation
- ightharpoonup Scalar sector SM-singlet scalar χ required by SSB of U(1)' provides Majorana masses for ν_R
- New states: Z' gauge boson, 3 heavy neutrinos, 1 real scalar
- New parameters: $g'_1, \tilde{g}, M_Z, \alpha, m_{H2}, m_{\nu_h}$

$$V(H,\chi) = m_1^2 H^{\dagger} H + m_2^2 \chi^{\dagger} \chi + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (\chi^{\dagger} \chi)^2 + \lambda_3 (H^{\dagger} H) (\chi^{\dagger} \chi)$$

The (type-I) seesaw mechanism

The observation of neutrino oscillations has provided a clear evidence for BSM but neither the details of this new physics nor its scale are known

the simplest and minimal way to account for neutrino masses is the (type-I) seesaw mechanism

$$-\mathcal{L} = Y_{\nu}^{ij} \, \bar{L}^i \tilde{H} \nu_R^j + M^{ij} \overline{(\nu_R^i)^c} \, \nu_R^j + \text{h.c.}$$
 Dirac mass Majorana mass

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T \\ m_D & M \end{pmatrix} \qquad \longrightarrow \qquad m_{\nu_l} \simeq -m_D^T M^{-1} m_D$$

$$m_D = 1/\sqrt{2} v Y_{\nu}$$

if the seesaw scale is in the TeV range we could have the opportunity to disclose its dynamics at the LHC

Heavy neutrino interactions

$$-\mathcal{L} = Y_{\nu}^{ij} \, \bar{L}^i \tilde{H} \nu_R^j + Y_N^{ij} \overline{(\nu_R^i)^c} \, \nu_R^j \chi + z_{\nu_R} g' \, \bar{\nu}_R^i \gamma^\mu \nu_R^i \, B'_\mu + \dots$$
 Dirac mass Majorana mass

Heavy neutrino interactions with the SM gauge bosons (typical of type-I seesaw)

$$\mathcal{L} = \frac{g_2}{\sqrt{2}} V_{\alpha i} \bar{l}_{\alpha} \gamma^{\mu} P_L \nu_{h_i} W_{\mu}^- + \frac{g_Z}{2 \cos \theta_W} V_{\alpha \beta} V_{\alpha i}^* \bar{\nu}_{h_i} \gamma^{\mu} P_L \nu_{l_{\beta}} Z_{\mu}$$
$$V_{\alpha i} \simeq m_D / M \simeq \sqrt{m_{\nu_l} / m_{\nu_h}}$$

Heavy neutrino interactions with the SM-like and Heavy Higgses

$$\mathcal{L} = -\frac{1}{\sqrt{2}} Y_N^k \left(\sin \alpha H_1 + \cos \alpha H_2 \right) \bar{\nu}_{h_k} \nu_{h_k} \quad Y_N^k \simeq m_{\nu_k} / (\sqrt{2}x)$$

the complex scalar acts as a portal for heavy neutrino interaction with the SM-like Higgs

Heavy neutrino interactions with the Z' gauge boson

Others scenarios

- Different seesaw realisations
- Left-right symmetric models, GUT inspired models,
- Scalar + RH neutrino extended models (no need of extra gauge symmetry)

Model independent approaches using effective field theory

RH neutrinos allow for a new d=5 operator, besides the well-known Weinberg operator, inducing exotic Higgs decay

$$\mathcal{O}_{\nu_R \Phi} = \frac{(\alpha_{\nu_R \Phi})_{ij}}{\Lambda} \overline{(\nu_R^i)^c} \, \nu_R^j \, \Phi^{\dagger} \Phi + \text{h.c.}$$

arXiv:1704.08721

Heavy neutrino: decay modes

Heavy neutrino (main) decay modes

$$\nu_h \to l^{\pm} W^{\mp *} \quad \nu_h \to \nu_l Z^*$$

•
$$\nu_h \to l^{\mp} W^{\pm} \to l^{\mp} l'^{\pm} \nu_{l'}$$

•
$$\nu_h \to l^{\mp} W^{\pm} \to l^{\mp} q \bar{q'}$$

•
$$\nu_h \rightarrow \nu_{l'} Z \rightarrow \nu_{l'} l^+ l^-$$

•
$$\nu_h \to \nu_{l'} Z \to \nu_{l'} q \bar{q}$$

•
$$\nu_h \rightarrow \nu_{l'} Z \rightarrow \nu_{l'} \nu_l \nu_l$$

$$BR(qql) \sim 50\%$$
 $BR(llv_l) \sim 21\%$

Heavy neutrino: proper decay length

The total decay width can be extremely small due to the smallness of the (gauge) heavy neutrino interactions

$$\Gamma_{
u_h} \sim |V_{lpha i}|^2 \, m_{
u_h}^5, \quad |V_{lpha i}|^2 = m_{
u_l}/m_{
u_h}$$
 $\Gamma \sim 10^{-24} \, - \, 10^{-14} \, {
m GeV}$

- Long Lived (LL) heavy neutrino for $m_{\nu_h} \lesssim M_Z$ Displaced vertices appear in the detector (almost background-free)
- very LL heavy neutrinos ($m_{\nu_h} \lesssim 15-20$ GeV) may also decay outside the detector
- short lived heavy neutrinos for $m_{
 u_h} \gtrsim M_Z$

Heavy neutrino: production mechanisms

1. Heavy neutrino production from the SM-like Higgs

2. Heavy neutrino production from the **Heavy Higgs**

3. Heavy neutrino production from the **Z'**

Heavy neutrinos from the Exotic SM Higgs decay

$$\sigma(pp \to H_1 \to \nu_h \nu_h) = \cos^2 \alpha \, \sigma(pp \to H_1)_{\text{SM}} \frac{\Gamma(H_1 \to \nu_h \nu_h)}{\cos^2 \alpha \, \Gamma_{\text{SM}}^{\text{tot}} + \Gamma(H_1 \to \nu_h \nu_h)}$$
$$\Gamma(H_1 \to \nu_h \nu_h) = \frac{3}{2} \frac{m_{\nu_h}^2}{x^2} \sin^2 \alpha \frac{m_{H_1}}{8\pi} \left(1 - \frac{4m_{\nu_h}^2}{m_{H_1}^2}\right)^{3/2}$$

the small BR is compensated by the large Higgs production σ

in an abelian extension of the SM, the vev x is fixed by the Z' mass

$$x = M_{Z'}/(2g')$$

in other scenarios x is a free parameter and larger BR can be obtained

Heavy neutrino: signatures

Typical mass hierarchy:

CMS detector geometry

Approximate description of the CMS detector

The horizontal (R1) and vertical (R2) hatched areas correspond to optimised regions for DV observations in the muon chambers and tracker respectively

$$R_2^{min} = 0.1 m$$

$$R_2^{max} = 0.5 m$$
 $|z_2| < 1.4 m$

$$R_1^{min} = 0.5 m$$

$$R_1^{max} = 5.0 m \qquad |z_1|$$

$$|z_1| < 8.0 m$$

Exotic SM Higgs decay: benchmark points

Signatures:

- Displaced muons reconstructed using only the MC
- Displaced leptons reconstructed using the tracker

LO - MC parton level analysis at the LHC at 13 TeV and L = 100 fb⁻¹

	$m_{ u_h}$ (GeV)	$c au_0$ (m)	$\sigma_{ u_h u_h}$ (fb)
BP1	40	1.5	332.3
BP2	50	0.5	248.3

parameters comply with
Higgs searches
(HiggsBounds, HiggsSignals)
and Drell-Yan analyses

cross section normalised with $\sigma = 43.92$ fb (LHCHXSWG)

Simulation procedure:

- 1. generate events with CalcHEP or MadGraph
- 2. for each event compute the decay length in the lab. $c\tau$ for the two heavy neutrinos
- 3. randomly sample the distance L according to $e^{-x/c\tau}$ distribution
- 4. using the generated momentum, determine the position of the DV

Event selection – muons in the muon chambers

- $p_T > 26$ GeV for two leading muons, $p_T > 5$ GeV for all the others
- $\bullet |\eta| < 2$
- $\Delta R > 0.2$
- $L_{xy} < 5 \text{ m}$, $L_{xy}/\sigma_{L_{xy}} > 12 \text{ with } \sigma_{L_{xy}} \simeq 3 \text{ cm}$
- $|d_0|/\sigma_d > 4$ with $\sigma_d \simeq 2$ cm
- $\cos \theta_{\mu\mu} > -0.75$

selection according to CMS PAS EXO-14-012

Event analysis – muons in the muon chambers

- $p_T > 26$ GeV for two leading muons, $p_T > 5$ GeV for all the others
- $|\eta| < 2$
- $\Delta R > 0.2$
- $L_{xy} < 5 \text{ m}$, $L_{xy}/\sigma_{L_{xy}} > 12 \text{ with } \sigma_{L_{xy}} \simeq 3 \text{ cm}$
- $|d_0|/\sigma_d > 4$ with $\sigma_d \simeq 2$ cm
- $\cos \theta_{\mu\mu} > -0.75$

selection according to CMS PAS EXO-14-012

We define three inclusive and disjoint categories: 2μ , 3μ , 4μ

	2 μ	3 μ	4 μ
BP1 (ct ₀ = 1.5 m)	29.53	3.91	0.18
BP2 ($ct_0 = 0.5 \text{ m}$)	5.02	0.66	0.014

Displaced muons in the muon chambers LHC 13 TeV L = 100 fb^{-1}

The "Muon Chamber" analysis is particularly sensitive to bigger ct₀

Event selection and analysis – leptons in the inner tracker

- $p_T > 26$ GeV for two leading muons, $p_T > 5$ GeV for all the others
- $|\eta| < 2$
- $\Delta R > 0.2$
- $0.1 \,\mathrm{m} < L_{xy} < 0.5 \,\mathrm{m}$
- $|d_0|/\sigma_d > 12$ with $\sigma_d \simeq 20 \,\mu\text{m}$
- $\cos \theta_{\mu\mu} > -0.75$

selection according to CMS-B2G-12-024

We define three inclusive and disjoint categories: 2l, 3l, 4l

	2 <i>l</i>	3 <i>l</i>	4 l
BP1 (ct _o = 1.5 m)	9.65	4.64	0.79
BP2 (ct ₀ = 0.5 m)	33.16	18.2	2.79

Displaced leptons in the inner tracker LHC 13 TeV L = 100 fb⁻¹

- The "Inner Tracker" analysis is particularly sensitive to smaller ct₀
- The flavour composition can be easily scrutinised

Comments on tri-lepton triggers

The requirement of a least three leptons can allow for lower thresholds on the lepton transverse momenta

tri-lepton triggers have been extensively used in searches for supersymmetric particles but never employed in the study of displaced vertices

lepton trigger	BP1		BP2			
	2 <i>l</i>	3 <i>l</i>	4 <i>l</i>			
$p_T > 26,26 \text{ GeV}$	9.65	4.64	0.79	33.16	18.2	2.79
$p_T > 20, 20, 10 \text{ GeV}$	-	8.22	1.42	-	38.6	8.11
$p_T > 20, 15, 15 \text{ GeV}$	-	5.31	1.31	-	27.3	6.94

 $p_T > 5$ GeV for any subleading leptons

Long-lived particles: future prospects

MATHUSLA - Massive Timing Hodoscope for Ultra Stable neutral particles

arXiv:1606.06298

Possible geometric configuration for the MATHUSLA surface detector at the HL-LHC

Conclusions

- ➤ Heavy neutrinos offer a variety of signatures that can be explored at the LHC: displaced vertices, boosted objects and fat jets, ...
- ightharpoonup Displaced vertices and tracks are typical signatures of long-lived heavy neutrinos ($m_{
 u_h} \lesssim M_Z$)
- "Muon chambers" and "tracker" analyses are complementary and sensitive to different heavy neutrino lifetimes
- Displaced vertices characterise long-lived heavy neutrinos with relative small mass (new experiments will probe very long lifetime)
- New (soft) physics may be hidden by the trigger thresholds! it would be extremely important to develop dedicated triggers

Backup slides

The minimal Z' model: a comment on the kinetic mixing

 The most general Lagrangian allowed by gauge invariance admits a kinetic mixing between the two abelian field strengths

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{1}{4}F'^{\mu\nu}F'_{\mu\nu} - \frac{\kappa}{2}F^{\mu\nu}F'_{\mu\nu}$$

even if absent at tree-level it can be reintroduced by radiative corrections

 The kinetic Lagrangian can be recast into a diagonal form thus introducing a non-diagonal covariant derivative

$$\mathcal{D}_{\mu} = \partial_{\mu} + ig_1 Y B_{\mu} + i(\tilde{g} Y + g_1' Y_{B-L}) B_{\mu}' + \dots$$

induced Z-Z' mixing
$$heta' \simeq ilde{g} rac{M_Z \, v/2}{M_{Z'}^2 - M_Z^2}$$

an additional abelian gauge factor can always be described by a linear combination of the hypercharge and of the B-L quantum number

- We can explore an entire class of minimal Abelian models through the ratio of the gauge couplings \tilde{g}/g'_1
- Typical benchmark models:

$$g'_1 = 0$$
 : sequential SM $\tilde{g} = 0$: pure B-L

$$\tilde{g} = -2g'_1$$
: U(1)_R
 $\tilde{g} = -4/5g'_1$: U(1)_X from SO(10)

Heavy neutrinos from the *Heavy Higgs decay*

For $m_{H_2} < 160$ GeV ($m_{\nu_h} < 80$ GeV) the $H_2 \to WW$ channel is closed and the $\sigma(\nu_h \nu_h)$ can reach 400 fb

This channel can be competitive to the scalar mediated mode only for $m_{\nu_h} \gtrsim 200$ GeV For $\alpha \approx 0$, the Z' production mode remains the main accessible channel despite its low σ

Heavy neutrino: decay probability

Probability for the heavy neutrinos decaying in the annulus defined by the radial distances

 $d_1(\eta)$ and $d_2(\eta)$

$$P = \int_{d_1(\eta)}^{d_2(\eta)} dx \frac{1}{c\tau} \exp\left(-\frac{x}{c\tau}\right) \qquad c\tau = \beta \gamma c\tau_0$$

