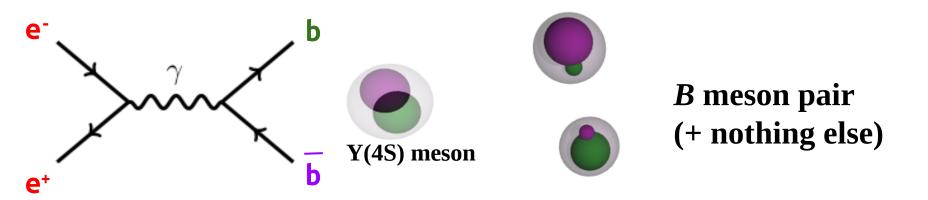


B Decays with Invisibles in the Final State

Martin Heck | 26. September 2017


Institut für Experimentelle Teilchenphysik (ETP)

Overview

- Current Status
 - $\bullet \quad B \rightarrow h^{(*)} X_{invisble}$
 - $B^+ \rightarrow l^+ \nu \ (l = e, \mu, \tau)$
 - $B \rightarrow D^* \tau v$
- Future
 - Prospective Influence of Detector and Reconstruction Mods of Belle II vs. Belle
 - Tools and Methods Outlook

$$\mathbf{B} \rightarrow \mathbf{h}^{(*)} \mathbf{X}_{invisble}$$

 current measurements dominated by B factories (Belle, Babar) due to heavy use of production mechanism in analysis

$\mathbf{B} \rightarrow \mathbf{h}^{(*)} \mathbf{X}_{invisble}$

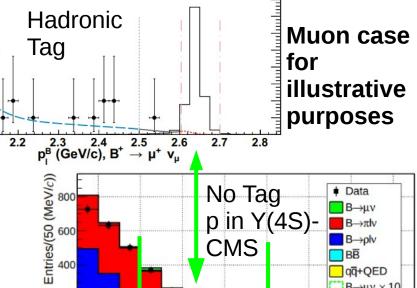
- typical basic strategy:
 - recombine one of the B mesons of the Y(4S) currently typically divided into semileptonic tag-side and hadronic tag-side decays
 - select h^(*) in certain momentum range (typically based on B → h^(*) v v expectation)
 - veto any additional tracks, neutral pions/kaons
 - fit the amount of energy remaining in the calorimeter for the remaining events

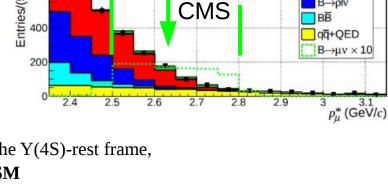
$\mathbf{B} \rightarrow \mathbf{h}^{(*)} \mathbf{X}_{invisble}$

- Momentum Selection Issues @ Belle
 - $p(B_{signal})$ about 331 (326) MeV/c in the (~known) Y(4S)-cms for B⁺ (B⁰) mesons
- Cuts on momentum to avoid
 - $b \rightarrow c \rightarrow s$ transitions
 - two body decays, e.g. B \rightarrow K* γ (BR \sim 4 x 10⁻⁵)...

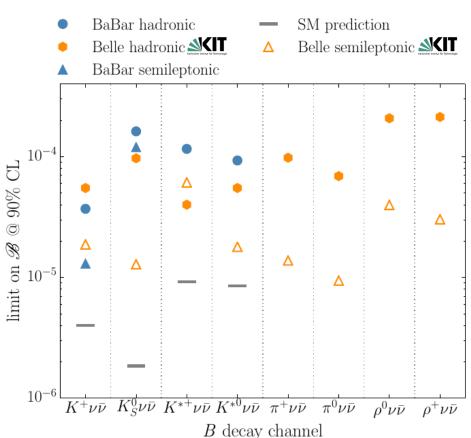
in the *Hadronic Tag* analysis:

$$(1.6 < p(h^{(*)}) < 2.5)$$
 GeV/c in B_{sig} frame

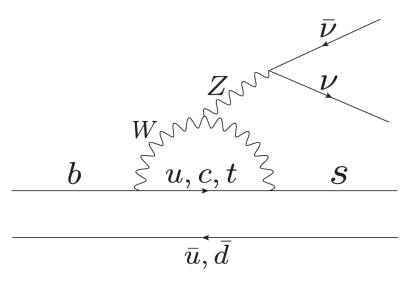

• Semileptonic Tag analysis uses $(0.5 < p(h^{(*)}) < 2.96)$ GeV/c in the Y(4S)-rest frame, and then this variable is used in a **multi-variate method with SM**

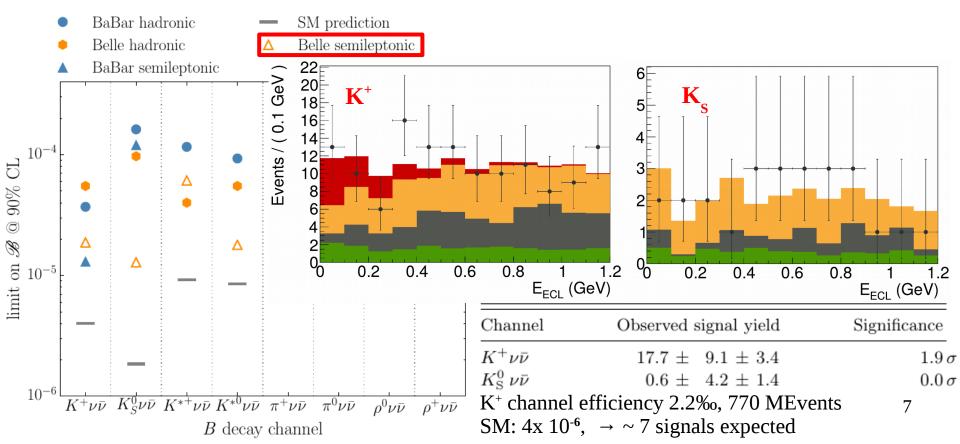

Events / (0.025 GeV/c)

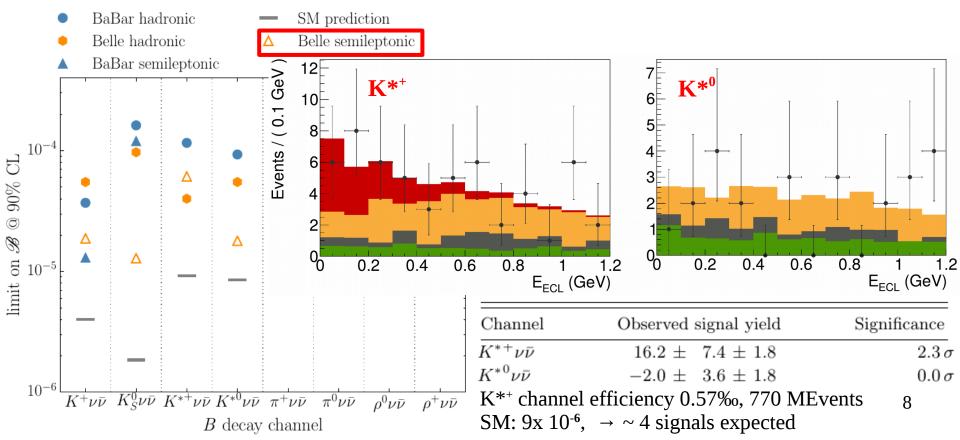
2.1

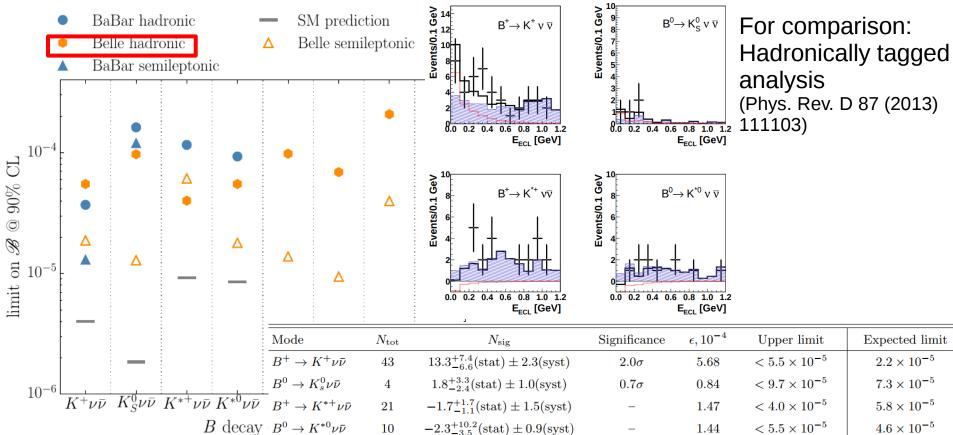

 $\mathbf{B} \rightarrow \mathbf{h}^{(*)} \mathbf{v} \mathbf{v}$ simulation

==> this is somewhat more difficult to interprete for other purposes






Let's have a look at current $B \rightarrow h^{(*)} v v$ 5 analyses!



 highest sensitivity currently for the semileptonically tagged (more model dependent) Belle analysis https://arxiv.org/pdf/1702.03224.pdf, PRD accepted

$\mathbf{B} \rightarrow \mathbf{h}^{(*)} \mathbf{X}_{\text{invisble}} - \mathbf{Conclusion}$

- sensitivity for SM decay involving neutrinos is very close
- future analyses should potentially consider in early stages effects of alternative h-momentum distributions (e.g. has P'₅ anomaly consequences (?)) and/or extract yield in bins of h-momentum
- single particle X, like light axi-flavons require special searches, that don't cut away interesting momentum range

Belle analysis reference:

semileptonic tag: https://arxiv.org/pdf/1702.03224.pdf , PRD accepted

hadronic tag: https://arxiv.org/pdf/1303.3719.pdf , Phys. Rev. D 87 (2013) 111103

$\mathbf{B}^+ \rightarrow \mathbf{l}^+ \mathbf{v} \ (\mathbf{l} = \mathbf{e}, \, \mathbf{\mu}, \, \mathbf{\tau})$

- for τ case analysis strategy is almost identical as for the B \rightarrow h(*) v v, only momentum, PID is different
- due to helicity suppression τ branching fraction much higher than for light leptons
- however, search for possible heavy invisible particle fairly difficult due to unprecise tau momentum knowledge

E_{ECL} (GeV) E_{ECL} (GeV) (a) $\tau^+ \rightarrow e^+ \bar{\nu}_{\tau} \nu_e$ (b) $\tau^+ \rightarrow \mu^+ \bar{\nu}_{\tau} \nu_{\mu}$ Events / (0.05 GeV) **Example from Belle** E_{ECL} (GeV) E_{ECL} (GeV) semileptonically tagged $B \rightarrow \tau v$ analysis (c) $\tau^+ \rightarrow \pi^+ \bar{\nu}_{\sigma}$ (d) $\tau^+ \rightarrow \rho^+ \bar{\nu}_{\tau}$ Phys. Rev. D 92, 051102(R) Figure 7.8: Result of the fit on the real data sample in E_{ECL} .

Events / (0.05 GeV)

Data

Signal

Continuum

 $b{
ightarrow}c$ neutral

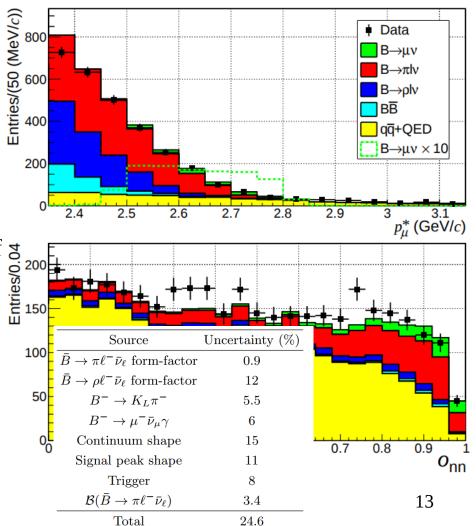
 $b{
ightarrow}c$ charged

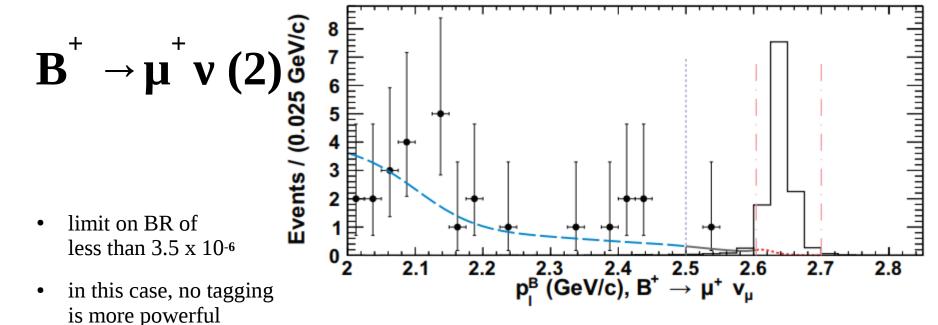
Rare b neutral

Rare b charged

 $b{
ightarrow}u\ell\nu_{\ell}$ neutral

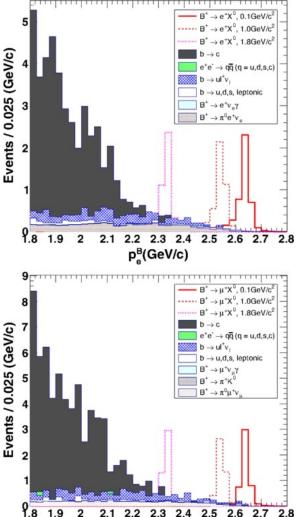
 $b{
ightarrow}u\ell\nu_{\ell}$ charged


$$B^+ \to \mu^+ \nu$$

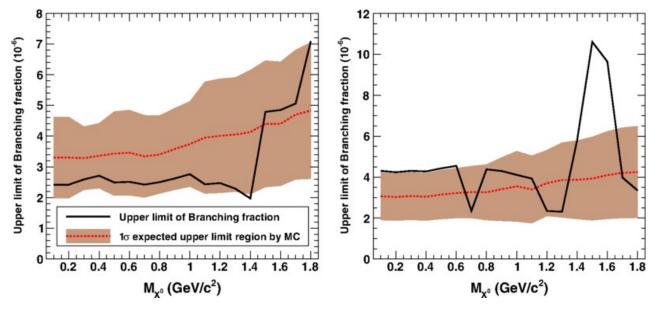

- Strategy 1 (Belle, lead authors Sibidanov, Varvell):
 - Identify a muon
 - Fit the muon momentum in the Y(4S) rest frame and the output of an multivariate classifier
- Strategy 2 (Belle, lead authors Yook, Kwon): Phys. Rev. D 91, 052016
 - again use the tag side recombination and veto additional particles

$\mathbf{B}^{+} \rightarrow \mu^{+} \mathbf{v} (1)$

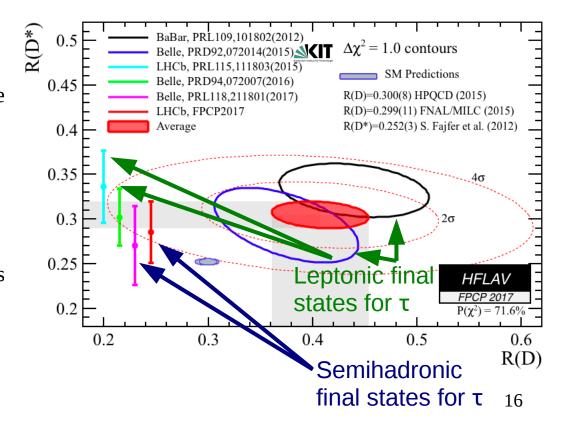
• 2.4 o significance,


$$\mathcal{B}(B^- \to \mu^- \bar{\nu}_\mu) \in [2.9, 10.7] \times 10^{-7}$$
 at the 90% C.L.

→ probably should be tried for things like axi-flavon, too, but as leptons are rare in continuum, there is no guarantee, that this works out better


For heavy neutrinos, hadronic tag potentially competitive

pB(GeV/c)


Hadronically tagged heavy neutrino search

(Belle, lead authors Park, Kwon, Phys. Rev. D 94, 012003)

$B \rightarrow D^* \tau \nu$ - BR Overview

- world average differs by
 ~4 σ from theory predictions
- Slightly different analysis strategie for different experiments (Babar, LHCb, Belle), tagging methods
- when thinking about New
 Physics solutions to the
 discrepancy, take into account,
 that we might not actually see
 τ leptons, but perhaps light leptons
 + missing mass/energy

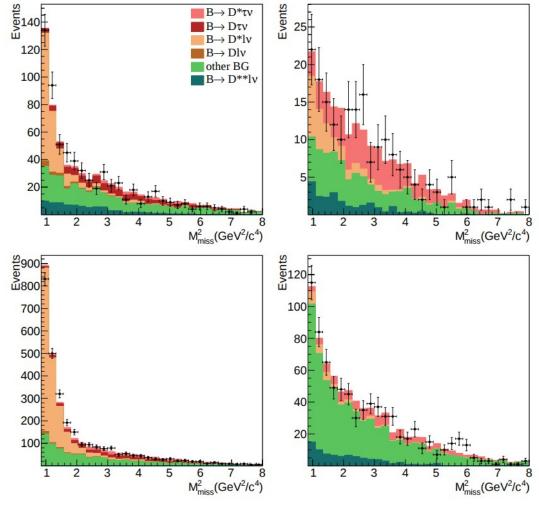


FIG. 3. Projections of the fit results and data points with statistical uncertainties for the high M_{miss}^2 region. Top left: $D^+\ell^-$; top right: $D^{*+}\ell^-$; bottom left: $D^0\ell^-$; bottom right: $D^{*0}\ell^-$.

Example distributions from Belle hadronically tagged analysis with leptonic final state for tau

Prospective Influence of Detector and Reconstruction Mods of Belle II vs. Belle

- Integrated Lumonosity goal: x50
- Much better particle identification, especially at high momenta for pion/kaon separation, at low momenta for lepton ID
- Better Momentum Resolution of Tracks, higher tracking efficiency
- At full luminosity, potentially more fake tracks, background energy in the calorimeter → especially for analyses reliant on vetos of additional particles, early data probably will be more valuable than later data

Tools and Methods Outlook

- development of tagging techniques is going on (hadronic tagging at Belle currently has an efficiency of $\sim 0.5\%$ for single track signals), substantial improvement seems feasible
- improved momentum resolution without tagging or semileptonic tagging is studied, some success is very likely
 - \rightarrow reanalysis of B \rightarrow $\mu\nu$ even in Belle under way

Summary & Outlook

- B Meson analysis at Y(4S)-machines with invisible particles in the final state have sensitivities from $10^{-5} 10^{-7}$ depending on the visible particles in the common decay
- To improve sensitivities for potential axion-like particles, heavy neutrinos, etc. an increased awareness during the performance of the analyses can be helpful in the future
- While x50 luminosity increase will be the dominant improvement for the presented analyses, reconstruction and analysis tools developments can play an additional role