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Topics covered

e A primer: How does lattice describe continuum physics?
* Classically and at loop level in lattice perturbation theory

* General strategy for lattice theory for curved spacetimes (classical)
* Topology, Geometry, and Hilbert Space

e General considerations for quantum corrections
e Counterterms required to cancel position dependent quantum loops

e Radial quantization for conformal field theory on the lattice

Oscar Klein Ernst Ising

. q54 Theory on the Riemann sphere

e Ongoing work and future directions

Topics omitted

* Dirac fermions on curved lattice

. Wilson term PRD 95 (11), 114510

* 2D Ising from free Dirac theory

Earlier Works

* Random Lattice Field Theory. Christ et al Nuclear Physics B 202.1 (1982): 89-125
* GR without Coordinates (Regge Calculus). T Regge, Nuovo Cim. 19 (1961) 558-571

* Finite Elements




How does |lattice describe the
continuum (classical)

* Nonlocal operators in LGT contribute infinite
tower of local operators

* Many are not Lorentz invariant

* Classically, operators breaking Lorentz
Invariance vanishasa — 0

A A (%) ~ V2 (x) + a Z 74p(x) + 0(a*)

)

* On lattice, one takes continuum limit by taking
a — 0 while holding physical quantity fixed

* For free theory, each physical momentum
converges to continuum result

* Deep UV is always wrong
* One might worry about quantum effects

Isensitive to UV modes spoiling the continuum
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How does lattice describe the continuum (quantum)

* Nonperturbative proofs are hard

* One can prove renormalizability and continuum limit in perturbation
theory

* “Power counting theorem” for lattice perturbation theory (T. Reisz 1988-
1989)

* deg(I) < 0 — Integral is finite and given by naive continuum limitas a — 0

* Consider ¢* theory in d=2,3 dimensions. At one loop:
q

AJ me diq 1 deg(l,) = d — 2

zll(kim;a)z_ — . : . -
k k 2 _1/a (2m)2 G2 + m? divergent in 2 and 3 dimensions

» Divergent constant can be absorbed into counterterm 6m?
* Diagram only has support on k=0 due to transl/ation invariance
 This will change on a curved lattice without translation invariance!



How does lattice describe the continuum (quantum), ctd

* At two loops:

A2 e dlq d?q 1 1 1
=12(k,m;a)=—j = T > — —
3 J_nq 2m)* 2m)¢ (G°+m?) ((¢" — q)2 + m2) ((q' — k)% + m?)

deg(l,) =2d — 6 — Divergentin d=3

* Can check that divergence is independent of k and renormalized
perturbation theory can be made Lorentz Invariance

T/a —_ —_—
2 ddq ddql 1 1 q/2 — (qr — k)Z
. — . . k, ; - — 2
Rloma) = LOma)+D(kma)  LUmO=3 | GoiGn G (=2 + o) (@ = 0 + m@ + )
deg(D,) =2d —7 — Well defined continuum limit in d=3

Renormalizable QFTs are also renormalizable in lattice regularization
The renormalized LFT becomes Lorentz invariant in the continuum limit



Why Study Strongly Coupled QFTs in Curved Space

. Theoretic_al exercise: non erturbative
renormalization in curved space

* Many interesting QFTs in curved space and gd-1
irregular lattices

N A
 Conformal field theories

* Complementary method to the bootstrap for CFTs in
d = 3 dimensions

« Cf. EI-Showk et al, Physical Review D 86 (2), 025022

* Gauge/Gravity dualities v
e Condensed matter systems

* Graphene

e Radial Quantization on the Lattice
e Dilation symmetry manifest. I

e Translations must be recovered dynamically, but this is

less important. Spacing of decedents will be noninteger
at finite lattice spacing.

r
* Exponential separations down cylinder

_____________
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Power law correlators become exponentially decaying
Can isolate lowest states using usual lattice tricks



Schematic Approach to Lattice
Theory for Curved Manifolds

Target Manifold, M

Topology M —» M, Geometry, g*V — g-" Hilbert Space Quantum Effects and
4 Renormalization

¢ (x)
b2 P3
o _ e Define metric by * Expand fields in finite * Quantum loops
. P.artl’lc.lon space into assigning lengths basis sensitive to curvature
simplices * Regge Calculus * Finite Elements * “Quantum Finite

* Simplicial Complexes Elements”



Topology and Simplicial Complexes

Replace target manifold with a sequence of increasingly dense
simplicial partitions of “refinement” s

M - {MS}SELZ,...
At the moment, no metric. Purely topological.

* How the simplices are glued together determines the topology
of the space

* Practically speaking, at each refinement we have a list of points
and a neighbor table (amenable to intrinsic geometry)

Simplicial complex provides an organized foundation on which to
build geometrical structures (metric, vierbein, spin connection, etc)

T ANYA

Given a set of vertices, simplicial complex can always be constructed
via the Delaney / Voronoi construction
» Establishes links between vertices by maximizing smallest angle in simplices

0, = 0y = ... > 0y

* Relies on knowing something about Geometry first, so slightly out of order




Geometry and Regge Calculus

* Define metric distance along edges by assigning lengths

* Continue metric to interior of each simplex to be flat (not the only choice)
* Then, geometry of each simplex known entirely in terms of edge lengths

loy (i, )| = l;; = some #

* Very clean coordinate choice: Barycentric Coordinates
 For apoint y in a d-simplex

d

d
i=0 Z{i=1

ds? = dy - dy = g;;§'¢’

* Constant flat metric everywhere inside simplex

e Can construct, e.g., Einstein Hilbert term and find EH action given

entirely in terms of deficit angles
* “GR without Coordinates”, T. Regge, 1960
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Hilbert Space and Finite Elements

* To regulate the QFT, we truncate the Hilbert space by expanding in a finite field basis
on each simplex called a finite element basis. d(x)

d d
b =) F©O¢ D EO=1 E[)=4 ¢ bs
i=0 i=0

* Common tool for solving classical PDEs in engineering, E&M (cf. Jackson), fluid
dynamics, ...

* We use simplest case, linear finite elements , E!(§) = &
 Gradients are constants everywhere in the simplex, 9;¢,(&) = ¢; — ¢,

* Plugging expansion into action, arrive at discrete action in terms of lattice degrees of
freedom located at vertices

i — f/)j)z

2

d
1 .. 1
S, =5 ¥ loal g9 (¢ — 90y — d0) =5 ¥ Vi (9

Lj=1 (L.J)

“vertex form” “edge form”
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Ex. 1) Free Scalar Fields on S?

* Construction of refined simplicial lattice (s = 3 ~1/a)

Icosahedron “Refine” Project
a.k.a s=1 Divide each face into smaller All points now lie on sphere
Plato’s best sphere Equilateral triangles (s-1) times Distances given by secant distances

In embedding space
11



Ex. 1) Free Scalar Fields on S : Laplacian Spectrum

2
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Ex. 1) Free Scalar Fields on S : Laplacian Spectrum

A

20001 s =128~ 1/Cl * IR spectrum becomes exact
| asa —» 0
e Each physical angular
ISGOj momentum is converging

e Spectrum is always bad
| near the UV cutoff (not
1000 | shown)

 Now we’re ready to think

500 | e about interacting theories!

A(D) e = 1+ 1.00012[% — 0.00001313 — 0.000005(*



Ex 2) ¢* Theory on S2

* Really want to do ¢p* Theory on R X §2. Thisis a “warm up”

* S2 is locally equivalent to R? up to Weyl factor (stereographic

projection)
ds? = dr* + r’d¢? = 0*(6, ¢)(d6? + sin® 0 dp?)

e Studying 2D Ising fixed point in a very difficult way!
* It’s useful to know the answer

* First attempt: simply run monte-carlo calculation of observables .
using our FEM action and attempt to reach the critical point

B (¢i_¢j)2 , M ’
S_zAij 7 +ZAi/1<¢i_ﬁ>

(6.J)




B i n d e r C u m u | a nt (Binder, K. 1981. Z. Physik B 43 119)

U4(,u2,/10, S)
U A = 1 <M4>
4(“1 ;S) E _ 3<M2>2
M = z W * Ordered phase, Uy, =1
xd)x * Disordered phase, U, = 0 5
X > > U

15



Obstruction to Criticality on S*
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Frustration!
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52=1.808745
1°51.8093705
y=1.809996
1°51.8106215
y>=1.811247
1°51.8118725
y>=1.812498
1°51.8131235
y=1.813749
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u 31.8181275
py =1.818753
u"51.8193785
p°=1.820004
1"51.8206295
y°=1.821255
1"51.8218805
y°=1.822506
u"51.8231315
P =1.823757
u=1.8243825
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Classical finite elements fail to
converge to the quantum field theory
Projection from icosahedron to sphere
leads to distortion of areas even in
continuum limit
* Each vertex sees a different local
UV cutoff
* Quantum loops contribute to
renormalized mass differently at
different vertices
Low mode distortions due to quantum
loops
* UVis always wrong on a lattice
* But IR must be repaired!
Essentially, we’ve chosen a bad
scheme
* Looks like we need to tune a
volume number of couplings
* Hopeless?

16



Quantum Corrections on a Curved Lattice

* General proof of renormalizability on curved lattice is hard
* No translation symmetry, no Fourier techniques
* No closed form for the propagator at finite lattice spacing

* Nonetheless, we propose a scheme which follows the spirit of the perturbative
renormalization scheme of Reitz

* The scheme assumes the following

1. Only diverﬁ_ent diagrams are sensitive to the lattice spacing in the deep UV, so only
divergent diagrams remain position dependentasa — 0

2. Thedivergence is “universal” (the same at all positions)

* If (1) and (2) are true, then one only needs to add a finite position dependent
counterterm to the FEM Laplacian to cancel the position dependence in the finite
pieces of the UV divergent diagrams

* Then the divergence is removed as in usual lattice theory: either by explicit
subtraction by a universal counterterm in perturbation theory, or
nonperturbatively by tuning the universal bare mass to reach the critical surface

* We refer to this scheme as “quantum finite elements”



Quantum Corrections for ¢* theory in d=2

* Only one UV divergent diagram!

4@ = L(xma)=Lma) + (L (x,ma) —L(ma) hmas= zwxll(x,m; a)
X /
* |f divergence universal, subtracted piece is finite!

* [ =0 piece * This becomes our counterterm
* Expect divergenceasa — 0 * Finite function of xasa - 0

* Diagram is simply diagonal piece of inverse of FEM kinetic term

(s ) = [+ )

S XX

18



Quantum Corrections for ¢p* theory in d=2
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Quantum Corrections for ¢* theory in d=2

* Look at first convergent diagram, two loops
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Criticality on S with guantum finite elements
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Critical 2-point function
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Critial 4-point function

(0(1)o(2)a(3)a(4))
G(z)=Gu,v) = 2 £ 110 O
(0(1)o(3)o(2)a(4)) u-=1.822405, A=1.0, 8=0, fitted norm
G(r.6)
Any number of dimensions, only two real conformal invariants
2 .2 2 .2
_ Nal3s b = 714723
35y 375
u=1zz, v=_1-2)(1-2)
1
G(z) = T 1“1+\/1—Z|+|1—\/1—Z”
V2|z]3|1 — z|2

Polar coordinates: z = ret?

1\/1 +7 ++/1+ 72— 2rcos(0)
G(T‘, 9) — E 1
V2r2(1 + 12 — 2rcos(6))
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Critial 4-point function
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Zero free parameters! Not fits!

5=36, ©=1.822405, A=1.0

preliminary
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Ongoing and future work

S
v . . . .
Radial Lattice Radial quantization in 4d
Quantization [ :
. S ‘z_—>
in3d |
3-sphere N /A
(stereographic ~ o
Projection of geodesics) A
N~
_ 600-cell
3D Ising Model CFTs in condensed matter

e.g. Quantum criticality

The full symmetry _
group of the 600-cell is
the Weyl group of H,.
This is a group of order
14400




