Recent physics highlights from ATLAS

Valerio Dao (CERN)
on behalf of the ATLAS Collaboration

Symposium 25 Years of LHC Experimental Programme

CERN

15-12-2017
Another great and busy year for ATLAS

✦ Harvesting Run 1 measurements reaching unprecedented precision

✦ Exploiting the full potential of the 2015+2016 data:
 - constraining the Higgs sector
 - exploring new physics with high sensitivity

✦ Successful detector operation in 2017:
 - 93.3% data taking efficiency, 93.6% “good-for-Physics”
 - addressing challenges from higher pileup
Standard Model Total Production Cross Section Measurements

ATLAS Preliminary
Run 1,2 $\sqrt{s} = 7, 8, 13$ TeV

- **LHC pp $\sqrt{s} = 7$ TeV**
 - Data 4.5 – 4.9 fb$^{-1}$
- **LHC pp $\sqrt{s} = 8$ TeV**
 - Data 20.3 fb$^{-1}$
- **LHC pp $\sqrt{s} = 13$ TeV**
 - Data 0.08 – 36.1 fb$^{-1}$

- **Theory**

Cross sections: from inclusive ...

Standard Model Total Production Cross Section Measurement

Status: July 2017

Dao Valerio
25 years LHC symposium - 15/12/2017

4.2 σ evidence for tZ
Cross sections: … to differential

Lepton kinematics in tt events

Triple differential Drell-Yan cross section:

\[d^3\sigma = \frac{d^3\sigma}{dm_{\ell\ell}d|y_{\ell\ell}|d\cos\theta^*} \]

PDF

Weak Coupling constant

Z/\gamma interference

Dao Valerio

25 years LHC symposium - 15/12/2017
First measurement at the LHC

Precision comparable with leading measurements from Tevatron

\[
m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.) MeV}
\]

Total error: 19 MeV (0.02%)
\(m_W, \ m_{\text{top}}, \ m_H \) are related to **fundamental parameters** of the Standard Model and provide key information to test its consistency.
Precision: top quark mass

- m_{top} measured with different $t\bar{t}$ decay modes:

 - **$l+jets$:** $m_{\text{top}} = 172.08 \pm 0.39 \pm 0.82$ GeV
 - **di-lepton:** $m_{\text{top}} = 172.99 \pm 0.41 \pm 0.74$ GeV

- **Run1 combination:**

 $m_{\text{top}} = 172.51 \pm 0.27 \pm 0.42$ GeV

- **Combinations**

<table>
<thead>
<tr>
<th>Source</th>
<th>m_{top}</th>
<th>stat</th>
<th>syst</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF (Mar 2014)</td>
<td>173.16 ± 0.57 ± 0.74</td>
<td>0.019</td>
<td>0.70</td>
</tr>
<tr>
<td>D0 (Jul 2016)</td>
<td>174.95 ± 0.40 ± 0.64</td>
<td>0.019</td>
<td>0.70</td>
</tr>
<tr>
<td>CMS (Apr 2016)</td>
<td>172.44 ± 0.13 ± 0.47</td>
<td>0.019</td>
<td>0.70</td>
</tr>
<tr>
<td>ATLAS (Sep 2017)</td>
<td>172.51 ± 0.27 ± 0.42</td>
<td>0.019</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Note:

- $l+jets$: measured with different $t\bar{t}$ decay modes:
 - Run1 combination: $m_{\text{top}} = 172.51 \pm 0.27 \pm 0.42$ GeV
 - 0.3% uncertainty

 Dao Valerio
 25 years LHC symposium - 15/12/2017
Precision: Higgs boson mass

H→ZZ*→4l

Higgs boson precision channels well established at 13 TeV

H→γγ

Preliminary Run-2 result approaching Run-1 legacy ATLAS+CMS measurement
The success of the Run 1 results relied on clean *bosonic decay modes* and *leading production mechanisms*.

Many more aspects of the Higgs sector still to be explored: *direct coupling to quarks*.
Higgs boson coupling to quarks: $H \rightarrow bb$

VH associated production:

- Leptons from W/Z used for triggering/background reduction

$\mu_{VH}^{bb} \rightarrow \nu/\ell/\ell$ and $\nu/\nu/\ell$

Run 1+Run 2: \(3.6 (4.0) \sigma\) observed (expected)

\[
\frac{\sigma_{meas}}{\sigma_{SM}} = \mu_{VH}^{bb} = 0.90 ^{+0.18 \text{ (stat.)}} _{-0.18} ^{+0.21 \text{ (sys.)}}
\]

Evidence of $H \rightarrow bb$ through VH associated production

ATLAS
\(\sqrt{s} = 13\,\text{TeV},\ 36.1\,\text{fb}^{-1}\)
0+1+2 leptons
2+3 jets, 2 b-tags

Weighted by S/B

Dijet mass analysis
Higgs boson coupling to quarks: \(ttH \)

- \(ttH \) production:
 - direct access to top Yukawa coupling at tree level
 - expected cross section: 500 fb
 - rich phenomenology: need to combine many signatures

\(H \rightarrow WW, \tau\tau, ZZ \)

- very crowded final states
- large backgrounds constrained from data
- multivariate classification techniques

3l example

\(H \rightarrow bb \)
Higgs boson coupling to quarks: ttH

- **ttH production:**
 - Direct access to *top Yukawa coupling at tree level*
 - Expected cross section: 500 fb
 - Rich phenomenology: need to combine many signatures

$H \rightarrow WW$, $\tau \tau$, ZZ

$H \rightarrow bb$

- Very crowded final states
- Large backgrounds constrained from data
- Multivariate classification techniques

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$

- Post-Fit

Data - Bkgd.

ATLAS-CONF-2017-076

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$

- Pre-Fit Bkgd.

ATLAS-CONF-2017-077

- Post-fit

$tH (b\bar{b})$ Combined Dilepton and Single Lepton

Dao Valerio

25 years LHC symposium - 15/12/2017
ttH: combination

- Also including events targeting $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4l$:
 - very high S/B but still low number of expected events

- evidence for ttH production
- one of the rarest process measured at the LHC

\[
\sigma_{\text{meas}}(t\bar{t}H) = 590^{+160}_{-150} \text{ fb}
\]
Snapshot of the Higgs boson landscape: Run 1+Run 2

- Additional statistics is needed to:
 - improve the precision of the existing measurements
 - assess rare production/decay modes
 - expand differential cross section measurements

Observed decays: 31%
Evidence: 58%

(*) First direct limits on $H \rightarrow cc$
(ATLAS-CONF-2017-078)
$\sigma_{ZH} \times Br(H \rightarrow cc(\ell\ell)) < 2.7$ pb

Dao Valerio 25 years LHC symposium - 15/12/2017
Higher \sqrt{s} and luminosity have greatly increased our reach for new physics up to high masses.

Exotics

ATLAS Exotics Searches - 95% CL Upper Limit Exclusions

Status: July 2017

<table>
<thead>
<tr>
<th>Model</th>
<th>$\ell^+\ell^-$</th>
<th>Jets</th>
<th>E_{T}^{miss}</th>
<th>Limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD $G_{H} \rightarrow g/q$</td>
<td>$0 \leq 1$</td>
<td>1-4</td>
<td>3.61</td>
<td>$1.76 , \text{TeV}$</td>
<td>ATLAS-CONF-2017-054</td>
</tr>
<tr>
<td>ADD non-resonant $\gamma\gamma$</td>
<td>$2 \leq 1$</td>
<td>3.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD QED</td>
<td>$2 \leq 1$</td>
<td>3.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD $BH \rightarrow \sum_{\gamma\gamma}^2$</td>
<td>$1 \leq 1$</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD BH multijet</td>
<td>≥ 3</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSI $G_{H} \rightarrow g/q$</td>
<td>$2 \leq 1$</td>
<td>3.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk RS $G_{H} \rightarrow WW \rightarrow q\bar{q}X$</td>
<td>$1 \leq 1$</td>
<td>3.67</td>
<td>$1.76 , \text{TeV}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-plicity / RPP</td>
<td>$2 \leq 1$</td>
<td>3.12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quark bosons

<table>
<thead>
<tr>
<th>Model</th>
<th>$\ell^+\ell^-$</th>
<th>Jets</th>
<th>E_{T}^{miss}</th>
<th>Limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM $Z \rightarrow t\bar{t}$</td>
<td>$0 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM $Z \rightarrow t\bar{t}$</td>
<td>$2 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptophobic $Z' \rightarrow b\bar{b}$</td>
<td>$1 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptophobic $Z' \rightarrow W^+W^-$</td>
<td>$1 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM $W' \rightarrow c\bar{c}$</td>
<td>$1 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVT $V' \rightarrow WW \rightarrow q\bar{q}pY$</td>
<td>$0 \leq 1$</td>
<td>3.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVT $V' \rightarrow WW, ZH$</td>
<td>$0 \leq 1$</td>
<td>3.67</td>
<td>$1.76 , \text{TeV}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRSM $W_0 \rightarrow b\bar{b}$</td>
<td>$1 \leq 1$</td>
<td>2.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRSM $W_0 \rightarrow t\bar{t}$</td>
<td>$1 \leq 1$</td>
<td>2.03</td>
<td>$1.76 , \text{TeV}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DM

<table>
<thead>
<tr>
<th>Model</th>
<th>$\ell^+\ell^-$</th>
<th>Jets</th>
<th>E_{T}^{miss}</th>
<th>Limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial-vector mediator (Dirac DM)</td>
<td>$0 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector mediator (Dirac DM)</td>
<td>$0 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VV γ (Dirac DM)</td>
<td>$0 \leq 1$</td>
<td>3.61</td>
<td>$1.3 , \text{TeV}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO</td>
<td>$2 \leq 1$</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalar LO 1^{st} gen</td>
<td>$2 \leq 1$</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalar LO 2^{nd} gen</td>
<td>$2 \leq 1$</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalar LO 3^{rd} gen</td>
<td>$1 \leq 1$</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO $TT \rightarrow H^{-}X$</td>
<td>$0 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO $TT \rightarrow Z^{-}X$</td>
<td>$1 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO $TT \rightarrow W^{-}X$</td>
<td>$1 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO $BR \rightarrow B^{-}X$</td>
<td>$2 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO $BR \rightarrow W^{-}X$</td>
<td>$2 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO $QO \rightarrow W_{Q}\bar{Q}$</td>
<td>$1 \leq 1$</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heavy/quirky

<table>
<thead>
<tr>
<th>Model</th>
<th>$\ell^+\ell^-$</th>
<th>Jets</th>
<th>E_{T}^{miss}</th>
<th>Limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excited quark $q'^{-} \rightarrow qg$</td>
<td>$2 \leq 1$</td>
<td>3.70</td>
<td>$8.0 , \text{TeV}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excited quark $q'^{-} \rightarrow q'Y$</td>
<td>$2 \leq 1$</td>
<td>3.70</td>
<td>$5.3 , \text{TeV}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excited quark $b'^{-} \rightarrow qg$</td>
<td>$1 \leq 1$</td>
<td>3.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excited quark $W'^{-} \rightarrow b^{-}Y$</td>
<td>$1 \leq 1$</td>
<td>3.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excited lepton $l'^{-} \rightarrow qg$</td>
<td>$1 \leq 1$</td>
<td>3.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excited lepton $l'^{-} \rightarrow q'Y$</td>
<td>$1 \leq 1$</td>
<td>3.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excited lepton $l'^{-} \rightarrow q^{-}Y$</td>
<td>$1 \leq 1$</td>
<td>3.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRSM Majorana ν</td>
<td>$2 \leq 1$</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higgs triplet $H'^{+} \rightarrow t\bar{t}$</td>
<td>$3 \leq 1$</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higgs triplet $H'^{+} \rightarrow b\bar{b}$</td>
<td>$3 \leq 1$</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monojet (non-RH prod)</td>
<td>$1 \leq 1$</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multicharged particles</td>
<td>$2 \leq 1$</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic monopoles</td>
<td>$1 \leq 1$</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$E_{T}^{miss} = 8 \, \text{TeV}$ $E_{T}^{miss} = 13 \, \text{TeV}$

Other

<table>
<thead>
<tr>
<th>Model</th>
<th>$\ell^+\ell^-$</th>
<th>Jets</th>
<th>E_{T}^{miss}</th>
<th>Limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_{L} \rightarrow \ell \nu_{L}$</td>
<td>$2 \leq 1$</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu_{R} \rightarrow \ell \nu_{R}$</td>
<td>$2 \leq 1$</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu_{L} \rightarrow \ell \nu_{L}$</td>
<td>$2 \leq 1$</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\sqrt{s} = 8, 13 \, \text{TeV}$

ATLAS Preliminary

$\int L \, dt = (3.2 - 37.0) \, \text{fb}^{-1}$

$\sqrt{s} = 8, 13 \, \text{TeV}$

Dao Valerio

25 years LHC symposium - 15/12/2017
Searches for physics beyond the SM

Higher \sqrt{s} and luminosity have greatly increased our reach for new physics up to high masses

Supersymmetry

ATLAS SUSY Searches - 95% CL Lower Limits

<table>
<thead>
<tr>
<th>Model</th>
<th>\tilde{g}, $\tilde{\tau}_1$, $\tilde{\chi}_1^0$, $\tilde{\chi}_1^0$</th>
<th>Mass limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0, 1$-jet + μ, τ</td>
<td>$0-2$ jets</td>
<td>Yes</td>
<td>36.1</td>
</tr>
<tr>
<td>$0, 1$-jet, $1-3$ jets</td>
<td>Yes</td>
<td>36.1</td>
<td></td>
</tr>
<tr>
<td>$0, 2-6$ jets</td>
<td>Yes</td>
<td>36.1</td>
<td></td>
</tr>
<tr>
<td>$0, 1$-jet</td>
<td>Yes</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>$0, 2-6$ jets</td>
<td>Yes</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>$0, 1$-jet</td>
<td>Yes</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>$0, 1$-jet</td>
<td>Yes</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>$0, 2-6$ jets</td>
<td>Yes</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>$0, 2$ jets</td>
<td>Yes</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>$0, 1$-jet</td>
<td>Yes</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>$0, 2-6$ jets</td>
<td>Yes</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>$0, 1$-jet</td>
<td>Yes</td>
<td>3.2</td>
<td></td>
</tr>
</tbody>
</table>

Gluino mass limit pushed up to 2 TeV

Stop mass limit reaching 1 TeV

Dao Valerio

25 years LHC symposium - 15/12/2017
Higher \sqrt{s} and luminosity have greatly increased our reach for new physics up to high masses.

Exotics

Supersymmetry

Continuously developing new analysis techniques/exploiting more complete information:

- accessing difficult corners of phase space
- increasing coverage of new models

Dao Valerio 25 years LHC symposium - 15/12/2017
(compressed) **electroweak SUSY** is a very elusive sector

First sensitivity to Higgsino beyond LEP

- Few GeV-level splitting accessible through **soft leptons** (down to 4 GeV)
- O(100 MeV) splitting produces long-lived charginos: accessible through **disappearing tracks**

ATLAS Preliminary

\[\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \]

- \(pp \rightarrow \tilde{\chi}_1^\pm, \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_2^\pm, \tilde{\chi}_1^\mp \) (Higgsino)
- All limits at 95% CL
 - Observed limits
 - Expected limits

> December 2017

Dao Valerio
Another great year for LHC

A big thank you to the CERN accelerator and support teams for the excellent performance

- Additional 50 fb\(^{-1}\) of pp collisions @ 13 TeV
- low pileup runs @ 5 and 13 TeV
Performance with 2017 pileup

Efficiency

- ATLAS Preliminary
- $\sqrt{s} = 13$ TeV, 32.8 fb$^{-1}$
- Medium muons $p_T > 10$ GeV
- ATLAS Preliminary $\sqrt{s} = 13$ TeV, 32 fb$^{-1}$
- Efficiency

ETmiss

- ATLAS Preliminary
- 33 fb$^{-1}$, $\sqrt{s} = 13$ TeV
- $Z \rightarrow \mu\mu$ topology, 2017 Data
- Track Soft Term (TST)
- Particle Flow jets
- Inclusive Jets
- Tight $E_{T}\text{miss}$

Jets

- ATLAS Preliminary
- $\sqrt{s} = 13$ TeV, 20.8 fb$^{-1}$
- Anti-k_T, $R=0.4$ EM+JES
- $p_T^{\text{jet}} > 20$ GeV, $|\eta| < 2.4$

Z→μμ event with μ=50

- ATLAS Preliminary
- $\sqrt{s} = 13$ TeV, 20.8 fb$^{-1}$
- Event with $\mu=50$
- $E_T\text{miss}$

b-tagging

- ATLAS Preliminary
- $\sqrt{s} = 13$ TeV, 32 fb$^{-1}$
- Mean b-tagged jet multiplicity
 - Jet $p_T > 25$ GeV
 - Jet $p_T > 60$ GeV
 - Jet $p_T > 100$ GeV

Muons

- ATLAS Preliminary
- $\sqrt{s} = 13$ TeV, 32.8 fb$^{-1}$
- Medium muons $p_T > 10$ GeV

Electrons

- ATLAS Preliminary
- $\sqrt{s} = 13$ TeV, 32.8 fb$^{-1}$
- OS $e\mu$ events
- Mean b-tagged jet multiplicity
 - Jet $p_T > 25$ GeV
 - Jet $p_T > 60$ GeV
 - Jet $p_T > 100$ GeV
Looking ahead

- This was only a small selection of the full set of ATLAS results:
 - 46 results released on 2015/16 data
 - ~700 from pp and heavy ions since 2010

- New 2017 data on tape is larger than what we have analysed so far at 13 TeV
- Even more data to come in 2018 for both pp and heavy ion collisions

Thank you for your attention
Exotics: resonances

- **Comprehensive searches for \(Y \rightarrow XZ \):**
 - leptons, photons, jets
 - vector boson
 - SM-like Higgs boson to \(bb \)
 - generic state decaying into \(qq \)

- **Boosted hadronic final states**
 - \((V, H, X) \) bridge into the multi TeV regime

VV→qqqq→JJ

EXOT-2016-19

- **Data / Pred.**
 - Events / 0.1 TeV
 - \(1 \rightarrow 10 \)
 - \(1 \rightarrow 10 \)
 - \(1 \rightarrow 10 \)
 - \(1 \rightarrow 10 \)

Vh→qqbb→JJb

EXOT-2016-12/

- **Data**
 - Fits + HVT model B \(m=1.5 \) TeV
 - Fits + HVT model B \(m=2.4 \) TeV

NN Events

Sensitive Variable

N Events
... from 2015 PbPb run: measuring “quenching” in Heavy Ions medium for different probes
Looking at Di-Higgs production as a window for Higgs self coupling

$HH \rightarrow bb\gamma\gamma$ is the golden channel:
- $Br: 0.1\%$ but very striking signal
- better tracker: improved b-tagging / γ reconstruction
- better calorimeter: improved $\gamma\gamma$ mass resolution

~ 40 fb
@14 TeV

best Run2 result:
$HH \rightarrow bbbb$ (13 fb$^{-1}$)
$\sigma/\sigma_{SM} < 29$ @95%CL

$-0.9 < \lambda/\lambda_{SM} < 7.7$

1 sigma expected for SM HH

$\lambda_{HHH}/\lambda_{H} < 29$ @95%CL
✦ **Gluino** mass limit pushed well into the TeV regime

<table>
<thead>
<tr>
<th>May 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS Preliminary</td>
</tr>
<tr>
<td>$\tilde{g} \rightarrow t\tilde{t}_1^0$, $\sqrt{s} = 13$ TeV</td>
</tr>
<tr>
<td>36.1 fb^{-1}</td>
</tr>
</tbody>
</table>

Stop mass limit approaching 1 TeV: challenging naturalness

- Observed limits
- Expected limits
- All limits at 95% CL
The top sector: very rare process

- **tZ associated production:**
 - 3 lepton final state
 - 1 Z pair, 2 jets, 1 b-tag jet
 - multivariate discriminant

\[\sigma_{tqZ} = 600 \pm 170 \text{(stat.)} \pm 140 \text{(syst.)} \text{ fb} \]

\[\sigma_{tqZ} \text{ (SM)} = 800 \pm 60 \text{ fb} \]

4.2 s.d. evidence !!!