RECENT RESULTS FROM CMS

Symposium: 25 Years of the LHC Experimental Programme

Louise Skinnari (Cornell U.), on behalf of the CMS Collaboration CERN, December 15, 2017

Introduction

Another successful year of CMS physics!

2017: A busy year

Replace the "heart" of CMS

new pixel detector to maintain excellent performance

- Prepare CMS for record-setting 2017 data taking
- Analyze large 2016 datasets
- Submit 4 (+2) Technical Design Reports Technical + Technical
 Proposal on MiP timing layer for High-Luminosity LHC upgrade

2017 operation

CMS

CMS Integrated Luminosity, pp

Date (UTC)

2017 data

- 2017 data taking recently ended, first performance studies with full dataset
- <u>Good physics object</u>
 <u>performance observed</u>

4

Physics highlights

CMS Preliminary November 2017 Droduction, α [bb] broduction, α [bp] ²01 Cross Section, α 10² 10⁻¹ 10⁻² **10**¹⁰ # events in **7** TeV CMS measurement ($L \le 5.0 \text{ fb}^{-1}$) 10⁵ 2015-2016 2016 dataset 8 TeV CMS measurement (L \leq 19.6 fb⁻¹) 13 TeV CMS measurement ($L \le 35.9 \text{ fb}^{-1}$) data 10⁹ Theory prediction ≥n jet(s) ✓ ✓ ✓ CMS 95%CL limits at 7, 8 and 13 TeV '≥n jet(s) 10⁸ 10⁷ 106 10⁵ 04 **10³** 10² 10^{-3} 10 0 10 ggH qqH VH WH ZH ttH HH Th. Δσ_H in exp. Δσ I EW I EW Iγγ→ EW IEW IEW IEW qqW qqZ WW qqWγssWW qqZγ qqZZ $WV\gamma Z\gamma\gamma W\gamma\gamma' tt$ w Z 'z_γ ww'wz'zz ttγ tZq'ttW'ttZ'tttt 'Wγ tW ' t_{t-ch} EW: W→lv, Z→ll, l=e,u All results at: http://cern.ch/go/pNj7

Measurements span **nine** orders of magnitude!

Physics highlights

CMS Preliminary November 2017 ⁻¹ Droduction, α [bp] ⁻¹ Drogs Section, α [bp] ⁻¹ Drogs Section, α [bp] ⁻¹ Drogs Section, α [bp] **10**¹⁰ # events in **7** TeV CMS measurement ($L \le 5.0 \text{ fb}^{-1}$) 10⁵ ' 2015-2016 2016 dataset 8 TeV CMS measurement (L \leq 19.6 fb⁻¹) 13 TeV CMS measurement ($L \le 35.9 \text{ fb}^{-1}$) data 10⁹ Theory prediction ∠ ∠ ∠ CMS 95%CL limits at 7, 8 and 13 TeV ⊵n iet(s) 10⁸ 10⁷ 106 105 04 **10³** 10² 10^{-3} 10 10 ggH qqH VH WH ZH ttH HH Th. Δσ_H in exp. Δσ I EW I EW Iγγ→ EW IEW IEW IEW qqW qqZ WW qqWγssWW qqZγ qqZZ $WV\gamma Z\gamma\gamma W\gamma\gamma' tt$ w Z 'z_γ ww'wz'zz ttγ tZq'ttW'ttZ'tttt 'Wγ tW t_{t-ch} EW: W→lv, Z→ll, l=e,u All results at: http://cern.ch/go/pNj7

Measurements span **nine** orders of magnitude!

Electroweak measurements

1st observation of same-sign WW

- Vector-boson scattering
- Enhanced in beyond-SM scenarios (modified Higgs sector or new resonances)
- Significance: <u>5.5σ</u> (5.7σ exp.),
 in agreement with SM

Electroweak measurements

1st observation of same-sign WW

- Vector-boson scattering
- Enhanced in beyond-SM scenarios (modified Higgs sector or new resonances)
- Significance: <u>5.5</u>σ (5.7σ exp.),
 in agreement with SM

CMS ee+µµ 0.23101 ± 0.00052 liminarv **CMS** ee 19.6 fb⁻¹ 0.23056 ± 0.00086 0.23125 ± 0.00060 LHCb µµ 3 fb⁻¹ 0.23142 ± 0.00106 ATLAS ee+µµ 4.8 fb 0.23080 ± 0.00120 0.23147 ± 0.00047 D0 ee 9.7 fb⁻¹ CDF ee+µµ 9.4 fb⁻¹ 0.23221 ± 0.00046 SLD: A 0.23098 ± 0.00026 LEP + SLD: A^{0,b} 0.23221 ± 0.00029 LEP + SLD 0.23153 ± 0.00016 0.23 0.231 0.232 0.233 $sin^2 \theta_{eff}^{lept}$ CMS-PAS-SMP-16-007

Weak mixing angle

- Exploit forward-backward asymmetry in
 - $Z \rightarrow ee/\mu\mu$ events (8 TeV data)
 - $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00052$
- Most precise LHC measurement so far

Top quarks

<u>1st observation of tops in proton-lead</u> <u>collisions</u>

- Precise probe of nuclear gluon density
- $\sigma_{t\bar{t}} = 45\pm8 \text{ nb}$, consistent with predictions

Top quarks

10

Top quarks

11

 \rightarrow 2017: From first discovery with gauge bosons, to confirming fermion couplings

2012 \rightarrow 2017: From first discovery with gauge bosons, to confirming fermion couplings

$\underline{H} \rightarrow \tau \tau \text{ observation}$

- + Combination of 7/8/13 TeV $\rightarrow 5.9\sigma$
- 1st single-experiment observation!

2012 \rightarrow 2017: From first discovery with gauge bosons, to confirming fermion couplings

Constrain $H \rightarrow \mu\mu$

- Probe 2nd gen. couplings
- Obs. limit: <u>2.64xSM</u> (1.89 exp.)
 @ 95% CL

Most stringent limit to date!

$H \rightarrow \tau \tau$ observation

- + Combination of 7/8/13 TeV $\rightarrow 5.9\sigma$
- 1st single-experiment observation!

Broad spectrum of new physics searches

- Probe different SUSY models/phase-space
- Long-lived particles
- Dark matter
- New resonances, ...

Broad spectrum of new physics searches

- + Probe different SUSY models/phase-space
- Long-lived particles
- Dark matter
- New resonances, ...

Broad spectrum of new physics searches

- Probe different SUSY models/phase-space
- Long-lived particles
- Dark matter
- New resonances, ...

Broad spectrum of new physics searches

- Probe different SUSY models/phase-space
- Long-lived particles
- Dark matter
- New resonances, ...

 $\sigma_{95\%}$ [pb]

Conclusions

- Exciting year for CMS physics!
 - Many new results, primarily analyzing 2016 13 TeV data
 - Unprecedented datasets allow detailed precision measurements & probing very rare processes
 - + Continued triumph of SM Higgs boson
 - Observation of coupling to tau leptons
 - Evidence for coupling to b/top quarks
 - + Extensive program searching for new physics
 - Direct searches
 - Precision SM
 - Rare processes
- Meanwhile, analyses of 2017 data & preparing for 2018 run ongoing!

None of this feasible w/o the >3500 CMS collaborators!

CMS

BACKUP

CMS detector

Upgraded CMS for HL-LHC

New Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to $\eta \sim 4$

Muons

- Replace DT FE electronics
- Complete RPC coverage in forward region (new GEM/RPC technology)
- Investigate Muon-tagging up to $\eta\sim 3$

Barrel ECAL

- Replace FE electronics
- Cool detector/APDs

Trigger/DAQ

- L1 (hardware) with tracks and rate up ~ 750 kHz
- L1 Latency 12.5 μs
- HLT output rate 7.5 kHz

Other R&D

- Fast-timing for in-time pileup suppression
- Pixel trigger

New Endcap Calorimeters

- Radiation tolerant
- High granularity