Southampton elusi Des in DisiblesPlus **School of Physics** neutrinos, dark matter & dark energy physics and Astronomy

Flavour and Neutrinos

Steve King

Introduction to Flavour

Quark and Lepton Mass

Angles and CP

Leptons

Yukawa couplings

 $y_{ij}H\psi_{i}\psi_{j}^{c}$ *j*

Why so small (apart from top quark)? *ⁱ*

Yukawa couplings BSM idea: Effective Y ukawa couplings

 ϕ

non-zero charge under the associated *U*(1)⁰ gauge group,

 ϕ ϕ ϕ

 $H \psi_i \psi_j^c$ *^j ,* (1)

 $\langle \phi \rangle$ Λ Yukawas small due to powers of ratios plus *H.c.*, summed over fields, families and powers of *n, m*. Eq.1 involves new SM singlet ψ_i ii ψ_j^c due to $\langle \phi \rangle$ of h*i*i*/*⇤. Our scenario also involves a massive *Z*⁰ under which the three SM families *ⁱ* ψ_{ϕ} is in ϕ if ϕ is via the same singlet fields in the same singlet fields in ϕ is in ϕ in ϕ in ϕ is a same singlet field of ϕ is a same singlet field of ϕ is a same singlet field of ϕ is a

Flavour scales can be from the Planck scale to electroweak scale

> $\langle \phi \rangle$ Λ Keeping fixed ratios

The Standard Model

The Standard Model

\mathcal{L} subset of uniform of the electronic of the electronic strong interactions \mathcal{L} is \mathcal{L} $G_{\text{SM}} \equiv \text{SU}(3)_{\text{C}} \times \text{SU}(2)_{\text{L}} \times \text{U}(1)_{\text{Y}}$ $\langle u_i \rangle$ $V - \Omega$ T_c $\left\{ d_i \right\}_L$ is equal in order to achieve in order to achieve in the set of achieve in σ u_{iR} (3, 1, 2/3) $Y_{u_L} = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$, Table 1: The SM fermionic content. For a given SM representation *R* one has (*n*3*,n*2*, y*) ⌘ $C_{\text{max}} = \text{C}\left[\frac{1}{2}\right] \times \text{C}\left[\frac{1}{2}\right]$ q_{iL} \equiv $\sqrt{2}$ u_i *di* ! *L* $q_{iL} \equiv \begin{pmatrix} u_i \\ u_i \end{pmatrix}$ (3,2,1/6) $Y \equiv Q - T_3$ *uiR* (3*,*1*,*2*/*3) d_{iR} (3,1*,*-1/3) sM gauge group and fermions $\mathbf{GSM} \equiv \mathbf{SU(3)_C \times SU(2)_L \times U(1)_Y}$ charge *Y*, defined as $Y \equiv Q - T_3$ u_{iR} (3, 1, 2/3) $V = \frac{2}{1}$ 1 $\frac{1}{2}$ and $\frac{1}{2}$ 6 $f(x_i, y_{i+1}, y_{i+1})$ are put in SU(2), i.e theory colour colour colours of $Y_{d_1} = -\frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ SM gauge group and fermions the parameter space where the minimum is at x = 0. $\sigma_{\text{SM}} = \text{SU}(3)_{\text{C}} \times \text{SU}(2)_{\text{L}} \times \text{U}(1)_{\text{Y}}$ of the hypercharge *Y* are chosen in such a way that the correct electric charges are obtained. As an $Y_{u_L} =$ $\frac{2}{3} - \frac{1}{2}$ = 1 $\frac{1}{6}$, $Y_{d_L} = -\frac{1}{3}$ $rac{1}{3}$ + 1 2 = 1 $\frac{1}{6}$

 $\begin{pmatrix}v_i\\v_i\end{pmatrix}$ (1 a 1/2)

 $e_{iL} = \left(e_i^-\right)_L$ $(1,2,3)$ $(1,2)$

 $\ell_{iL} = \begin{pmatrix} e_i^- \end{pmatrix}$ (1, 2, -1/2)

 $e_{i,p}^{-}$ (1,1,-1)

 e_{iR}^{-} (1,1,-1)

chiral, all representations of ⇥SU(2)^L are real, the SU(3)2*Y*, SU(2)2*^Y* and *^Y*³ cancel between the

 $\frac{1}{2}$

 $(1,2,-1/2)$

 ℓ_{iL} \equiv

 $\sqrt{2}$

 V_i

!

L

 e_{iR}^{-} (1*,*1*,*-1)

e i

Family universal couplings of gauge bosons to fermions

$$
D_{\mu} q_{L} = \left(\partial_{\mu} - i\frac{g_{s}}{2}\lambda_{k}G_{\mu}^{k} - i\frac{g}{2}\tau_{j}W_{\mu}^{j} - i\frac{g'}{6}B_{\mu}\right) q_{L},
$$

\n
$$
D_{\mu} u_{R} = \left(\partial_{\mu} - i\frac{g_{s}}{2}\lambda_{k}G_{\mu}^{k} - i\frac{2g'}{3}B_{\mu}\right)u_{R},
$$

\n
$$
D_{\mu} d_{R} = \left(\partial_{\mu} - i\frac{g_{s}}{2}\lambda_{k}G_{\mu}^{k} + i\frac{g'}{3}B_{\mu}\right) d_{R},
$$

\n
$$
D_{\mu} \ell_{L} = \left(\partial_{\mu} - i\frac{g}{2}\tau_{j}W_{\mu}^{j} + i\frac{g'}{2}B_{\mu}\right) q_{L},
$$

\n
$$
D_{\mu} e_{L}^{-} = \left(\partial_{\mu} + i g_{\mu}\right) e_{R}^{-}.
$$
Spot the

 $mistake?$

where $G_{\mathcal{A}}$ is a charged complex scalar field and \mathcal{A} is a real pseudos and *G* and *G* and *G* and *G* are masses states, the so-called Name bosons. *g v* **The electron W and Z masses** *Flavour Physics and CP Violation in the SM and Beyond*

$$
W_{\mu}^{a}, B_{\mu} \longrightarrow W_{\mu}^{+}, W_{\mu}^{-}, Z_{\mu}, A_{\mu}
$$

$$
M_W = \frac{g v}{2} \qquad \tan \theta_W \equiv \frac{g'}{g}
$$

$$
Z_{\mu}=\cos\theta_W W_{\mu}^3-\sin\theta_W B_{\mu}
$$

$$
M_Z = \sqrt{g^2 + g^{\prime 2}} \frac{v}{2} = \frac{M_W}{\cos \theta_W}
$$

Massless photon

Massless photon	\n $A_{\mu} = \cos \theta_W B_{\mu} + \sin \theta_W W_{\mu}^3$ \n
-----------------	---

$$
e = \frac{g g'}{\sqrt{g^2 + g'^2}} = g \sin \theta_W = g' \cos \theta_W
$$

\mathcal{L} interactions are the most general terms in the most general terms in the \mathcal{L} Yukawa couplings the War *answered in the framework of Grand-Unification, e.g.* SU(5)*, where the quantisation of electric charges is related to some new phenomena like the magnetic monopoles predicted in the theory* T interactions are the most general terms in the most general terms in the \mathbb{R} gauge involved couplings and the Higgs doublet. of the SM group of the SM group mass

 $-\mathscr{L}_Y = (Y_u)_{ij} \overline{q_i}_L \tilde{\phi} u_{iR} + (Y_d)_{ij} \overline{q_i}_L \phi d_{iR} + (Y_\ell)_{ij} \overline{\ell_i}_L \phi e_{iR} + \text{H.c.}$ $\mathbf{v} = \left(\begin{array}{c} u \end{array}\right)$ introducing a convenient parameter $\left(\begin{array}{c} u \end{array}\right)$ $-\mathscr{L}_Y = (Y_u)_{ij} \overline{q_i} \tilde{\phi} u_{iR} + (Y_d)_{ij} \overline{q_i} \phi d_{iR} + (Y_{\ell})_{ij} \overline{\ell_i} \phi e_{iR} + \text{H.c.}$

$$
\phi = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(\nu+H+i\,G_0) \end{pmatrix} \quad \begin{array}{l} \textbf{G}\text{ are Goldstone bosons eaten by W and Z} \\ \textbf{H}\text{ is the physical Higgs boson} \\ \textbf{v}\text{ is the vacuum expectation value} \end{array}
$$

space. The first two terms in eq. (3.1) will generate the up- and down-type quark masses while the $\psi = \left(\frac{1}{\sqrt{2}} (v + H + i G_0) \right)$. It is the physical Higgs boson wallue **H** is the physical Higgs boson **G are Goldstone bosons eaten by W and Z** space. The first two terms in eq. (3.1) will generate the up- and down-type quark masses while the

$$
-\mathscr{L}_{Y} = \frac{\nu}{\sqrt{2}} \left(Y_{u}\right)_{ij} \overline{u_{i}}_{L} u_{iR} + \frac{\nu}{\sqrt{2}} \left(Y_{d}\right)_{ij} \overline{d_{i}}_{L} d_{iR} + \frac{\nu}{\sqrt{2}} \left(Y_{\ell}\right)_{ij} \overline{e_{i}}_{L} e_{iR} + \frac{\left(Y_{u}\right)_{ij}}{\sqrt{2}} \overline{u_{i}}_{L} u_{iR} H + \frac{\left(Y_{d}\right)_{ij}}{\sqrt{2}} \overline{d_{i}}_{L} d_{iR} H + \frac{\left(Y_{\ell}\right)_{ij}}{\sqrt{2}} \overline{e_{i}}_{L} e_{iR} H
$$

Note: Higgs boson H cord i(*Yd*)*i j* p *dia* proportional to
di i(*Y*`)*i j e couplings* **2**
P and the proportional to Yukawa coupling **Note: Higgs boson H coup** *i*(*Yd*)*i j* gs are proportional to *i*(*Y*`)*i j* Note: Higgs boson H couplings are proportional to Yukawa couplings

†

The fields *uL,R,dL,R, eL,^R* are thus the mass eigenstates. The bi-unitary transformations given in

The zero superscripts remind us that the Yukawa matrices are not yet diagonal ro sup *<u>k</u>* cripts remind us that the Yukawa matrices are not yet diagonal

BUT even when diagonal the neutral current retains the same form:
 EXACT: \overline{a} *U*T even *when diagonal the* $neutra$ l curre \overline{a} BUT even when diagonal the neutral current retains the same form:

$$
\mathscr{L}'_{\text{NC}} = \frac{g}{\cos \theta_W} \left[\overline{u}_L \gamma^\mu u_L - \overline{d}_L \gamma^\mu d_L + \overline{v}_L \gamma^\mu v_L - \overline{e}_L \gamma^\mu e_L - 2 \sin^2 \theta_W J_{\text{e.m.}}^\mu \right] Z_\mu
$$

\overline{a} *d*0 **Hence no Flavour Changing Neutral Currents (GIM mechanism)** Hence no Flavour Changing Neutral Currents (GIM mechanism) **Hence no Flavour Changing Neutral Currents (GIM mechanism)**

• In the Standard Model, **lepton couplings** to the gauge bosons are **identical**: • In the Standard Model, **lepton couplings** to the gauge bosons are **identical**:

 \bullet The bronching freezione (DE) to different lepten genera • The branching fractions (BF) to different lepton generations only differ due to lepton masses **EXES, BESITER and Many other experiments.**

► Pressies at LEP of the University of the University suppression
► Higgs couplings, phase space, level of helicity suppression

- PIENU, NA62, BES-III, CLEO, KEDR and many other experiments. • Lepton Universality has been **thoroughly tested** over the years at LEF,
PIENU, NA62, BES-III, CLEO, KEDR and many other experiments. • **Charged Currents** measured to be universal with <2‰ precision • Lepton Universality has been thoroughly tested over the years at LEP, PIENU, NA62, BES-III, CLEO, KEDR and many other experiments.
	- **Charged Currents** measured to be universal with <2‰ precision **Neutral Currents** measured to be universal with <2‰ precision
		- Charged Currents measured to be universal with <2‰ precision for the first two generations

Quark Flavour

WH with the number of numbers
Quark Yukawa couplings and CKM
$\mathcal{L} = -v^u Y_{ij}^u \overline{u}_L^i u_R^j - v^d Y_{ij}^d \overline{d}_L^i d_R^j + h.c.$
$U_{u_L} Y^u U_{u_R}^{\dagger} = \begin{pmatrix} y_u & 0 & 0 \\ 0 & y_c & 0 \\ 0 & 0 & y_t \end{pmatrix}, \quad U_{d_L} Y^d U_{d_R}^{\dagger} = \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix}$
$U_{CKM} = U_{u_L} U_{d_L}^{\dagger} \qquad \text{5 phases removed}$
$\mathcal{L}^{CC} = -\frac{g}{\sqrt{2}} \left(\overline{u}_L & \overline{c}_L & \overline{t}_L \right) U_{CKM} \gamma^\mu W_\mu^+ \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix}$

. (47). (47). (47). (47). (47). (47). (47). (47). (47). (47). (47). (47). (47). (47). (47). (47). (47). (47). (47).

*U*CKM = *U^u*^L *U†*

4.
2 Analytic estimates for quark mixing mi

44 AA AA

Parametrising the CKM mixing matrix P_{α} α β β Im*Q* = $\frac{1}{2}$ p3 ⇡ 0*.*096*.* (3.50) **Parametrising the parametris in the quark set of th** $\overline{1}$ e C KM. **Parametrising the CKM mixing matrix**

$$
\begin{aligned}\n\left(\overline{u} \ \overline{c} \ \overline{t}\right)_L \gamma^{\mu} \begin{pmatrix}\nV_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}\n\end{pmatrix}\n\begin{pmatrix}\nd \\
s \\
t\n\end{pmatrix}_L W^+_{\mu} \\
\mu \\
\mu \\
\mu\n\end{pmatrix} \\
\begin{pmatrix}\nV_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{cd} & V_{cs} & V_{cb}\n\end{pmatrix} = \begin{pmatrix}\n1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & c_{23} & c_{23}\n\end{pmatrix}\n\begin{pmatrix}\nc_{13} & 0 & s_{13}e^{-i\delta_{13}} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta_{13}} & 0 & c_{13}\n\end{pmatrix}\n\begin{pmatrix}\nc_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1\n\end{pmatrix} \\
= \begin{pmatrix}\nc_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\
-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\
s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13}\n\end{pmatrix} \\
s_{13} = |V_{ub}|, \qquad s_{12} = \frac{|V_{us}|}{\sqrt{1 - |V_{ub}|^2}}, \qquad s_{23} = \frac{|V_{cb}|}{\sqrt{1 - |V_{ub}|^2}}\n\end{aligned}
$$

Quark CP violation

$$
(\overline{u} \ \overline{c} \ \overline{t})_L \gamma^{\mu} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_L W^+_{\mu}
$$

Quark CP violation

Some flavoured mesons

charged:

- $K^+ \sim \overline{s}u$, $D^+ \sim c\overline{d}$, $D^+_s \sim c\overline{s}$, $B^+ \sim \overline{b}u$, $B^+_c \sim \overline{b}c$, $K^{-} \sim s\overline{u}$, *D*− $\sim \overline{c}d$, *D*_{*s*} $\sim \overline{c}s$, *B*− $\sim b\overline{u}$, *B*_{*c*} $\sim b\overline{c}$, neutral:
	- $K \sim \overline{s}d$, *D* ∼ $c\overline{u}$, *B_d* ∼ *bd*, *B_s* ∼ *bs*, $\overline{K} \sim s\overline{d}$, $\overline{D} \sim \overline{c}u$, $\overline{B}_d \sim b\overline{d}$, $\overline{B}_s \sim b\overline{s}$,

The neutral K , D , B_d and B_s mesons mix with their antiparticles, \overline{K} , \overline{D} , \overline{B}_d and \overline{B}_s thanks to the weak interaction (quantum-mechanical two-state systems).

Examples of Quark Flavour *Changing Processes*

Flavour changing penguin

- \bullet b \rightarrow s|⁺| - transitions are rare in the SM (no tree level contributions: GIM, CKM, in some cases helicity suppressed)
- contributions:
ideally suite UIT, UNT, ITT SUITE CASES HEILICY SUPPLESSED)
d for indirect Nlow Physics seerches cany sureed for man eeer vew ringsies searenes
directly sensitive to energy scales O(100TeV)) • ideally suited for indirect New Physics searches • ideally suited for indirect New Physics searches (indirectly sensitive to energy scales O(100TeV))

Anomalies in b quark transitions PACTS b duark collare

- five different **experiments**: *ATLAS, BABAR, BELLE, CMS, LHCb*
- vastly different **collision environments** requiring different analysis strategies: *hadronic (abundant) VS leptonic (clean)*
- processes with different SM contributions: *tree level semi-leptonic decays, loop level FCNC transition*
- many **clean observables**: *angular observables, branching fraction ratios*

LFU tests with $B \rightarrow K(*)\mu\mu$ **and** $B \rightarrow K(*)$ **ee decays: R(K) and R(K*)**

• Theoretical uncertainties on the exclusive B→K(*)II branching fractions are **reduced to a per-mille level** in ratios *(hadronic effects cancel)*:

$$
R(K) = \frac{B^+ \to K^+ \mu^+ \mu^-}{B^+ \to K^+ e^+ e^-} \quad R(K^*) = \frac{B^0 \to K^{*0} \mu^+ \mu^-}{B^0 \to K^{*0} e^+ e^-}
$$

- SM, $R(K)$ and $R(K^*)$ expected to be close to unity.
- Sensitive to new neutral and heavy gauge bosons, lepto-quarks, Z' models.

R(K) and R(K*) results on behalf of the LHCb collaboration

LHCb focusses on the q2 regions with reliable theoretical predictions and small contributions from the resonant modes. Precision limited by statistics.

Siim Tolk

\mathcal{L} on behalf of the LHCb collaboration \mathcal{L} **Combined R(D) results**

Tree level **semi-leptonic b→clν transitions** are excellent test modes for charged currents: **statistically** modes for charged currents: **Tree level semi-leptonic b→clV transitions** are excellent test
medee for charged currents:

Combined R(D[∗] **) and R(D) significance is 4.1σ w.r.t SM** *(R(D*[∗] *) alone 3.4* σ*) small contributions from the resonant modes. Precision limited by statistics.* \overline{D} **Combined R(D) results 4.1** σ we the SM *(D^{*})* and R(D) significance is

Siim Tolk

Introduction to Neutrinos

Where do neutrinos appear in nature?

Nuclear Reactors

Particle accelerator

The atmosphere (Cosmic Rays)

ü

Earth's crust (Natural radioactivity) ü

Sun

Supernova (Star collapse) SN 1987A V

Astrophysical accelerator

Neutrinos from the Sun

Hans Bethe (1906-2005, Nobel prize 1967) Thermo-nuclear reaction chains (1938)
First measurement of neutrinos from the Sun

Inverse beta decay ("Neutrino capture")

600 Tonne Dry cleaning fluid

Homestake Solar neutrino-Observatory (1967–1994)

Physics Nobel Prize 2002 for Neutrino-Astronomy

Ray Davis Jr. (1914–2006) **Masatoshi Koshiba (*1926)**

" for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos"

Results of Chlorine Experiment (Homestake)

Average (1970-1994) $2.56 \pm 0.16_{stat} \pm 0.16_{sys}$ SNU (SNU = Solar Neutrino Unit = 1 Absorption / sec / 1036 Atoms) Theoretical Prediction 6-9 SNU "Solar Neutrino Problem" since 1968

Neutrino-Oscillations

Pontecorvo & Gribov (1968, Solar neutrino problem["])

• Neutrinos are quantum superpositions of mass states

 v_e = +cos θ v_1 + sin θ v_2 v_{μ} = –sin Θ v_1 + cos Θ v_2

•Different propagation speeds gives neutrino oscillations

Detecting neutrinos in water

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

Super-Kamiokande Detector (since 1996)

by Susana Molina Sedgewick

 $\binom{1}{k}$

 $\mathbf{\hat{u}}$

 \odot

Atmospheric Neutrino Oscillations (1998)

Atmospheric neutrino oscillations show characteristic L/E variation

The Official Web Site of the Nobel Prize
The Official Web Site of the Nobel Prize
The Masterclass 2018

First neutrinos from nuclear reactors (20th July 1956)

Anti-Electron Neutrinos from beta decay of fission products in Hanford Nuclear reactor \bigoplus Cd e^+ q^+ $e^ \gamma$ γ γ

3 Gammas in coincidence

Modern Reactor Experiments

Long-Baseline (LBL) Experiments

K2K Experiment (KEK to Kamiokande) measured precise neutrino oscillation parameters.

Since then other LBL Experiments:

- Minos (US)
- Opera (Europe)
- T2K (Japan)
- Nova (US)

Tsukuba to Kamioka (T2K) currently running experiment

World LBL experiments

Neutrino Mass and Mixing

The 6 observables in neutrino oscillations

✴The atmospheric mass squared difference ✴The solar mass squared difference ✴The atmospheric angle $*$ The solar angle θ_{12} ✴The reactor angle ✴The CP violating phase θ_{13}
hase δ Δm_2^2 θ_{23} Δm^2_3 31

Lepton Mixing Angles

CP Violating Phase

z = − ⎯⎯⎯⎯

UTLT

Lepton Mixing Matrix

PMNS and CKM mixing **This Cabibbo-Kobayaship CRM** matrix in a 3 \blacksquare can be parameterized by the control three mixing and the CP-violating \mathbb{R} . MNS and CKM mixing

[⎠] + h.c., VCKM [≡] ^V ^u

<u>L V</u>

L

 $\frac{1}{2}$

&

&

Vus

&

,

&

 \blacksquare

⎝

In the PDG parametrisation, provided by the PDG parametrisation, and the PDMNS is described by the PDG parametrisation, and the PDG parameters \mathcal{L}

 $0.01 - 0.01$

Vich Vice
Victoria

a *chapter 1 Internet in the magnetic magnetic magnetic magnetic magnetic magnetic magnetic magnetic magnetic m*

Vtd Vts Vtb

ij and *sij* = sin ✓`

0 *c*¹³

<u>(ul) γμ</u>

 \blacksquare

the first quadrant, so sij , cij ≥ 0.

station of the later.
1

µ W V V V

┪

 d

sL

 \mathbf{b}

the many possible conventions, a standard conventions, a standard choice has become $[3]$

%|Vud[|]

$$
\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}
$$

For Majorana neutrinos $\rightarrow \times$ diag(1, $e^{i\alpha_{21}/2}$, $e^{i\alpha_{31}/2}$)

Same form for quarks and leptons this hierarchy using the Wolfenstein parameterization. We define the CRM matrix is exactly if the CRM matrix is exactly and the CRM matrix. The CRM matrix is exactly in the CRM matrix. In shorthand, we may write the CRM ma I me form for quarks and leptons

² , s²³ ⁼ ^Aλ²

13*R*`

¹²*P*.

23*U*`

² ⁺ [|]Vus[|]

above as *U*PMNS = *R*`

Atmospheric νµ disappear, large *θ*23 (1998) SK Solar ν^e disappear, large *θ¹²* (2002) SK, SNO Solar v_e are converted to $v_\mu + v_\tau$ (2002) SNO Reactor anti-ν^e disappear/reappear (2004) Kamland Accelerator νµ disappear (2006) MINOS \overline{M} Accelerator v_{μ} converted to v_{τ} (2010) OPERA Accelerator νµ converted to νe , *θ13* hint (2011) T2K Reactor anti-ν^e disappear, *θ13* meas. (2012) DB, Reno A Brief History of Progress in Neutrino Physics since 1998

Latest NuFIT Fit 3.2

NuFIT 3.2 (2018)

 $\Delta m_{3l} = m_3 - m_1$

Quark vs Lepton mixings (again)

Open Questions

Is CP violated in the leptonic sector? (Probably) Is the atmospheric angle in first or second octant? Are neutrino masses NO or IO ? (NO preferred) What is the lightest neutrino mass?

Are neutrino masses Dirac or Majorana?

News in Neutrino 2018

Super-K atmospheric (Y. Hayato) T2K (M. Wascko) NOvA (M. Sanchez)

Already some interesting indications:

 \rightarrow NO favored by these 3 experiments at \sim (1 \sim 2) sigma level each.

 \rightarrow *These experiments give some favored* δ_{CP} *region(s).*

Future experiments that will tell us the neutrino masses hierarchy

We would like to be convinced the neutrino mass ordering by consistent results from several different technologies/methods with > 3 σ CL from each exp.

…and the LBL experiments will tell us about leptonic CP violation - important to know because it is related to leptogenesis and the origin of matter-antimatter asymmetry

Future LBL Neutrino Experiments

Neutrino Oscillations in vacuum

$$
P_{\alpha\to\beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \text{Re}(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right) + 2\sum_{i>j} \text{Im}(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin\left(\frac{\Delta m_{ij}^2 L}{2E}\right),\frac{\Delta m^2 c^3 L}{4\hbar E} = \frac{\text{GeV fm}}{4\hbar c} \times \frac{\Delta m^2}{\text{eV}^2} \frac{L}{\text{km}} \frac{\text{GeV}}{E} \approx 1.27 \times \frac{\Delta m^2}{\text{eV}^2} \frac{L}{\text{km}} \frac{\text{GeV}}{E} \Delta m_{ij}^2 = m_i^2 - m_j^2
$$

where *^E* is the neutrino energy, *^L* the oscillation baseline, and the ordered terms *^Pⁿ* ⁼ *^O*(✏*n*) are given by small parameter ✏ ⌘ *m*² 21*/m*² ³¹ ⇡ ⁰*.*03 under the assumption that sin² ✓¹³ ⁼ *^O*(✏)1. The expression for the oscillation probability is decomposed into terms of increasing power of *P*(⌫*^µ* ! ⌫*e*; *E,L*) ⌘ *P*¹ + *P*³ 2 ⁺ *^O* ✏ 2 *,* (2.1) where *^E* is the neutrino energy, *^L* the oscillation baseline, and the ordered terms Muon Neutrino Oscillations *^Pⁿ* ⁼ *^O*(✏*n*) *J* = 1 8 sin sin (2✓23) sin (2✓13) sin (2✓12) cos ✓13*.* For the theory to manifest CP violating e↵ects, *J* must be non-zero. Given our knowledge of the mixing angles, the exclusion of 2*/ {*0*,* ⇡*}* would be sucient to establish fundamental leptonic CP violation. Long-baseline experiments such as DUNE and T2HK aim to improve our knowledge

$$
P_1 = \frac{4}{(1 - r_A)^2} \sin^2 \theta_{23} \sin^2 \theta_{13} \sin^2 \left(\frac{(1 - r_A)\Delta L}{2}\right),
$$

$$
P_{\frac{3}{2}} = 8J_r \frac{\epsilon}{r_A(1 - r_A)} \cos \left(\delta + \frac{\Delta L}{2}\right) \sin \left(\frac{r_A \Delta L}{2}\right) \sin \left(\frac{(1 - r_A)\Delta L}{2}\right)
$$

For both channels, equivalent expressions for antineutrino probabilities can be obtained by

CP phase

CP phase Matter effect **Matter effect** sitivities. This is the control of the appearance and appearance and appearance and appearance and appearance o

Using the same scheme, the same scheme, the same scheme, the disappearance channel can be written at leading or

³¹ and = *m*²

+ *O*(✏)*.* (2.4)

Electron appearance $\Delta = \Delta m_{31}^2 / 2E$ **Property** $\frac{1}{2}$ **Property** sign for antineutrinos depends on CP phase
 $\epsilon \equiv \Delta m_{21}^2 / \Delta m_{31}^2 \approx 0.03$
 $r_A \Delta$ change sign for antipeutrings $\Delta = \Delta m_{31}^2/2E$ **P**($\frac{1}{2}$, 2⊂2∞212(2∑23) sin2(2∑23) sin2($\theta_{23} \sin \theta_{2}$ + *O*(✏)*.* (2.4) ase
for antinoutrinos $\epsilon \equiv \Delta m_2^2$ $\epsilon \propto \theta$ is decomposed into the oscillation probability is decomposed in the terms of into the set of increasing power of into the set of intervals power of intervals power of intervals power of intervals power of interv $\overline{}$ Electron appearance depends on CP phase r_A, δ change sign for antineutrinos **P**
P 2 = 8*J^r* CP phase $\Delta = \Delta m_{31}^2 / 2E$ $J_r = \cos \theta_{12} \sin \theta_{12} \cos \theta_{23} \sin \theta_{23} \sin \theta_{13}$
Future LBL experiments

Tokai to

Hyper-Kamiokande

A gigantic detector to confront elementary particle unification theories and the mysteries of the Universe's evolution-

(and maybe Korea)

DUNE T2HK Highly complementary experiments:

 $L = 1300km$ $L = 295km$

 $\overline{0}$

baseline but comparable energy range to T2HK, the fluxes on the right sample and right sample a very division on the right sample and

 $\mathbf{0}$

 $\overline{0}$

 $\overline{0}$

 $\overline{0}$

 $\overline{0}$

CP violation sensitivity

Neutrino Theory

The Electron Mass

Left-handed electron

Right-handed electron

Neutrino Mass

Left-handed neutrino

 V_L

Right-handed neutrino

Dirac $m_D \overline{\nu_L} \nu_R$

Left-handed neutrino

Majorana $m_{\nu}\overline{\nu_L}\nu_L^c$

Right-handed antineutrino

Right-handed neutrino mass

Right-handed neutrino

Left-handed antineutrino

Is Majorana mass renormalisable?

where Δ is light Higgs triplet with VEV < 8GeV from ρ parameter Renormalisable ΔL =2 operator

Non-renormalisable $\Delta L = 2$ operator \overline{M} \overline{L} \overline{L} \overline{L} \overline{M} \overline{M} \overline{M} \overline{M} \overline{M} \overline{L} \overline{L} \overline{V} \overline{e} \overline{L} \overline{V} \overline{e} \overline{L} \overline{V} \overline{e} \overline{L} \overline{V} \overline{e} $\overline{$

This is nice because it gives naturally small Majorana neutrino masses $m_{11} \sim <$ H⁰>²/M where M is some high energy scale

The high mass scale can be associated with some heavy particle of mass M being exchanged (can be singlet or triplet)

See-saw

mechanisms

$$
\begin{array}{c}\nH \\
L\n\end{array}\n\begin{array}{c}\nH \\
L\n\end{array}\n\begin{array}{c}\nH \\
L\n\end{array}\n\begin{array}{c}\nH \\
L\n\end{array}\n\begin{array}{c}\nH \\
L\n\end{array}\n\end{array}
$$

The three reasons for zero neutrino mass in the Standard Model

- 1. **There are no right-handed neutrinos**
- 2. There are no Higgs triplets of SU(2),
- 3. **There are no non-renormalizable terms**

Many (many) possibilities for the origin of neutrino mass...

Neutrino Mass Limits from the Laboratory

Many currently running experiments: GERDA, Majorana, EXO, CUORE, Kamland-Zen

This decay (on the left) is commonly observed [Double beta decay]

The rarest form of beta decay, if observed, would give a precise mass measurement

Double beta decay which emits anti-neutrinos

Neutrinoless double beta decay

This would also This would also prove that the prove that the neutrino has a Majorana mass

Neutrino

<0.2 eV

mass

Experimental determination of neutrino mass Majorana only (no signal if

Figure 2: The combined *m* limit range overlaid on the range of allowed *m* for a given

Extra dimensions

Planck brane

Overlap wavefunction of fermions with Higgs gives exponentially suppressed Dirac masses, depending on the fermion profiles

Loop Models of Neutrino Mass

The factor IV is a dimensionless O(1) and in the factor IV is a dimensionless O(1) number emerging of the factor

exists no such study in the literature with the focus put on the neutrino sector in radiative

H H H H H H H H H R-Parity Violating SUSY

 Majorana masses can be generated via RPV SUSY

 Scalar partners of lepton doublets (slepton doublets) have same quantum numbers as Higgs doublets

 If R-parity is violated then sneutrinos may get (small) VEVs inducing a mixing between neutrinos and neutralinos χ

 $m_{LL}^{\rm v} \approx \frac{\langle \tilde{v} \rangle^2}{M_{\chi}} \approx \frac{MeV^2}{TeV} \approx eV$

Minimal Type I seesaw

P. Minkowski (1977), Gell-Mann, Glashow, Mohapatra, Ramond, Senjanovic, Slanski, Yanagida (1979/1980), Schechter and Valle (1980)…

Type I see-saw mechanism Type II see-saw mechanism (SUSY)

Lazarides, Magg, Mohapatra, Senjanovic, Shafi, Wetterich, Schechter and Valle…

Type III see-saw mechanism Foot, Lew, He, Joshi; Ma… Supersymmetric adjoint SU(5)

Perez et al; Cooper, SFK, Luhn,…

See-saw w/extra singlets S

Inverse see-saw Wyler, Wolferstein; Mohapatra, Valle

 $\left(\begin{array}{ccc} 0 & M_D & 0 \\ M_D^T & 0 & M \\ 0 & M^T & \mu \end{array}\right) \quad \mathsf{M} \approx \mathsf{TeV} \rightarrow \mathsf{LHC}$ $M_{\nu} = M_D M^{T^{-1}} \mu M^{-1} M_D^T$

Linear see-saw

Malinsky, Romao, Valle

 $M_{\nu} = M_D (M_L M^{-1})^T + (M_L M^{-1}) M_D T$ LFV predictions

Seesaw mechanism

Minkowski; Yanagida; Gell-Mann, Ramond, Slansky; Glashow; Mohapatra, Senjanivic; Schechter, Valle;...

$$
\begin{pmatrix} \bar{\nu}_L & \bar{\nu}_R^c \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}
$$
 One family

 $m_D \ll M_R$ Seesaw assumption

 $m_{\nu} \approx \frac{m_D}{M_E} \sim 0.1 \text{eV}$ Physical neutrino mass $m_{\tilde I}^2$ *D* $M_{\bm{R}}$ ⇠ 0*.*1eV

 1^{10} 10⁵ 10¹⁰ 10¹⁵ 10^{-15} 10^{-10} 10^{-5} 1 105 $m_{\mathrm{Dirac}}^2(\mathrm{GeV}^2)$ M_R (GeV) **Nu-MSM, GeV steriles LSND, eV steriles LHC, TeV steriles Quarks and Charged Leptons WDM, keV steriles GUT steriles TeV→GUT steriles** $m_\nu \approx$ m_Γ^2 Dirac M_R $= 0.1eV$

 $m_{\nu} \approx$ m_Γ^2 Dirac *M^R* = 0*.*1eV $m_{\mathrm{Dirac}}^2(\mathrm{GeV}^2)$ m_e^2 *e* m_μ^2 *µ* m_τ^2 τ m_u^2 *u* m_d^2 *d* m_{s}^{2} *s m*² *c* m_b^2 *b m*² *t* 10^7 10^{10} 10^{13} 10^{16} 10^{-6} 0.001 1 1000 106 M_R (GeV) Which Dirac Mass ? m_b^2 Vanilla Leptogenesis suggests MR~1010 GeV

Two right-handed neutrinos: the Littlest Seesaw **1512.07531**

$$
m_D = \begin{pmatrix} 0 & b \\ a & 3b \\ a & b \end{pmatrix} \quad M_R = \begin{pmatrix} M_{\rm atm} & 0 \\ 0 & M_{\rm sol} \end{pmatrix}
$$

$$
m_{\nu} = m_D \frac{1}{M_R} m_D^T \qquad \text{seesaw formula in matrix form}
$$

$$
m_{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}
$$

$$
m_a = \frac{a^2}{M_{\text{atm}}} \qquad m_b = \frac{b^2}{M_{\text{sol}}}
$$

The Littlest Seesaw **1512.07531**

