School of Physics and Astronomy neutrinos, dark matter & dark energy physics

Steve King

Introduction to Flavour

Quark and Lepton Mass

Angles and CP

	$ heta_{12}$	$ heta_{23}$	$ heta_{13}$	δ
Quarks	$\underset{\pm 0.1^{\circ}}{13^{\circ}}$	$2.4^{\circ}_{\scriptscriptstyle{\pm 0.1^{\circ}}}$	$\underset{\pm 0.05^{\circ}}{0.2^{\circ}}^{\circ}$	$70^{\circ}_{\scriptscriptstyle{\pm5^{\circ}}}$
Leptons	$34^{\circ}_{\scriptscriptstyle{\pm1^{\circ}}}$	$45^\circ_{\pm 5^\circ}$	$8.5^{\circ}_{\pm 0.15^{\circ}}$	$-90^{\circ}_{\pm50^{\circ}}$

Yukawa couplings

 $y_{ij}H\psi_i\psi_j^c$

Why so small (apart from top quark)?

BSM idea: Effective Yukawa couplings m

 $H\psi_i\psi_j^c$

Yukawas small due to powers of ratios

Flavour scales can be from the Planck scale to electroweak scale

Keepingfixedratios

The Standard Model

The Standard Model

SM gauge group and fermions $G_{\rm SM} \equiv {\rm SU}(3)_{\rm C} \times {\rm SU}(2)_{\rm L} \times {\rm U}(1)_{\rm Y}$ $q_{iL} \equiv \begin{pmatrix} u_i \\ d_i \end{pmatrix}_L \quad (3,2,1/6)$ $Y \equiv Q - T_3$ $Y_{u_L} = \frac{2}{3} - \frac{1}{2} = \frac{1}{6},$ (3, 1, 2/3) u_{iR} (3, 1, -1/3) $Y_{d_L} = -\frac{1}{3} + \frac{1}{2} = \frac{1}{6}$ d_{iR} $\ell_{iL} \equiv \begin{pmatrix} v_i \\ e_i^- \end{pmatrix}_{\mathrm{L}} \quad (1, 2, -1/2)$ $e_{iR}^- \quad (1, 1, -1)$

Family universal couplings of gauge bosons to fermions

$$D_{\mu} q_{L} = \left(\partial_{\mu} - i\frac{g_{s}}{2}\lambda_{k}G_{\mu}^{k} - i\frac{g}{2}\tau_{j}W_{\mu}^{j} - i\frac{g'}{6}B_{\mu}\right)q_{L},$$

$$D_{\mu} u_{R} = \left(\partial_{\mu} - i\frac{g_{s}}{2}\lambda_{k}G_{\mu}^{k} - i\frac{2g'}{3}B_{\mu}\right)u_{R},$$

$$D_{\mu} d_{R} = \left(\partial_{\mu} - i\frac{g_{s}}{2}\lambda_{k}G_{\mu}^{k} + i\frac{g'}{3}B_{\mu}\right)d_{R},$$

$$D_{\mu} \ell_{L} = \left(\partial_{\mu} - i\frac{g}{2}\tau_{j}W_{\mu}^{j} + i\frac{g'}{2}B_{\mu}\right)q_{L},$$

$$D_{\mu} e_{L}^{-} = \left(\partial_{\mu} + igB_{\mu}\right)e_{R}^{-}.$$
Spot the deliberate mistake?

W and Z masses

$$W^a_\mu, B_\mu \longrightarrow W^+_\mu, W^-_\mu, Z_\mu, A_\mu$$

$$M_W = \frac{g v}{2}$$
 $\tan \theta_W \equiv \frac{g'}{g}$

$$Z_{\mu} = \cos \theta_W W_{\mu}^3 - \sin \theta_W B_{\mu}$$

$$M_Z = \sqrt{g^2 + g'^2} \frac{v}{2} = \frac{M_W}{\cos \theta_W}$$

Massless photon

$$A_{\mu} = \cos \theta_W B_{\mu} + \sin \theta_W W_{\mu}^3$$

$$e = \frac{gg'}{\sqrt{g^2 + g'^2}} = g\sin\theta_W = g'\cos\theta_W$$

Yukawa couplings

 $-\mathscr{L}_Y = (Y_u)_{ij} \,\overline{q_{iL}} \,\tilde{\phi} \, u_{iR} + (Y_d)_{ij} \,\overline{q_{iL}} \,\phi \, d_{iR} + (Y_\ell)_{ij} \,\overline{\ell_{iL}} \,\phi \, e_{iR} + \text{H.c.}$

$$egin{aligned} \phi &= egin{pmatrix} G^+ \ rac{1}{\sqrt{2}}(v+H+i\,G_0) \end{pmatrix} \ ilde{\phi} &\equiv i au_2\,\phi^\dagger \end{aligned}$$

G are Goldstone bosons eaten by W and Z H is the physical Higgs boson v is the vacuum expectation value

$$-\mathscr{L}_{Y} = \frac{v}{\sqrt{2}} (Y_{u})_{ij} \overline{u_{iL}} u_{iR} + \frac{v}{\sqrt{2}} (Y_{d})_{ij} \overline{d_{iL}} d_{iR} + \frac{v}{\sqrt{2}} (Y_{\ell})_{ij} \overline{e_{iL}} e_{iR}$$
$$+ \frac{(Y_{u})_{ij}}{\sqrt{2}} \overline{u_{iL}} u_{iR} H + \frac{(Y_{d})_{ij}}{\sqrt{2}} \overline{d_{iL}} d_{iR} H + \frac{(Y_{\ell})_{ij}}{\sqrt{2}} \overline{e_{iL}} e_{iR} H$$

Note: Higgs boson H couplings are proportional to Yukawa couplings

The zero superscripts remind us that the Yukawa matrices are not yet diagonal

BUT even when diagonal the neutral current retains the same form:

$$\mathscr{L}_{\rm NC}' = \frac{g}{\cos \theta_W} \left[\overline{u}_L \gamma^\mu u_L - \overline{d}_L \gamma^\mu d_L + \overline{\nu}_L \gamma^\mu \nu_L - \overline{e}_L \gamma^\mu e_L - 2\sin^2 \theta_W J_{\rm e.m.}^\mu \right] Z_\mu$$

Hence no Flavour Changing Neutral Currents (GIM mechanism)

In the Standard Model, lepton couplings to the gauge bosons are identical:

 The branching fractions (BF) to different lepton generations only differ due to lepton masses

Higgs couplings, phase space, level of helicity suppression

- Lepton Universality has been **thoroughly tested** over the years at LEP, PIENU, NA62, BES-III, CLEO, KEDR and many other experiments.
 - Neutral Currents measured to be universal with <2‰ precision
 - Charged Currents measured to be universal with <2‰ precision for the first two generations

Quark Flavour

$$\begin{aligned} & \mathsf{Quark Yukawa couplings and CKM} \\ \mathcal{L} = -v^{u}Y_{ij}^{u}\overline{u}_{\mathrm{L}}^{i}u_{\mathrm{R}}^{j} - v^{d}Y_{ij}^{d}\overline{d}_{\mathrm{L}}^{i}d_{\mathrm{R}}^{j} + h.c. \end{aligned}$$

$$\begin{aligned} & \mathcal{L} = -v^{u}Y_{ij}^{u}\overline{u}_{\mathrm{L}}^{i}u_{\mathrm{R}}^{j} - v^{d}Y_{ij}^{d}\overline{d}_{\mathrm{L}}^{i}d_{\mathrm{R}}^{j} + h.c. \end{aligned}$$

$$\begin{aligned} & \mathcal{L}_{u_{\mathrm{L}}}Y^{u}U_{u_{\mathrm{R}}}^{\dagger} = \begin{pmatrix} y_{u} & 0 & 0 \\ 0 & y_{c} & 0 \\ 0 & 0 & y_{t} \end{pmatrix}, \quad U_{d_{\mathrm{L}}}Y^{d}U_{d_{\mathrm{R}}}^{\dagger} = \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix} \end{aligned}$$

$$\begin{aligned} & U_{\mathrm{CKM}} = U_{u_{\mathrm{L}}}U_{d_{\mathrm{L}}}^{\dagger} \quad \text{5 phases removed} \\ & \mathcal{L}^{CC} = -\frac{g}{\sqrt{2}} \left(\bar{u}_{L} \quad \bar{c}_{L} \quad \bar{t}_{L} \right) U_{\mathrm{CKM}}\gamma^{\mu}W_{\mu}^{+} \begin{pmatrix} d_{L} \\ s_{L} \\ b_{L} \end{pmatrix} \end{aligned}$$

$$\begin{aligned} & \text{Unitary matrix} \quad U^{\dagger}U = I \end{aligned}$$

M M M M M M M M M M M M M M M M

11

Parametrising the CKM mixing matrix

$$\begin{pmatrix} \overline{u} \ \overline{c} \ \overline{t} \end{pmatrix}_{L} \gamma^{\mu} \begin{pmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{L} W^{+}_{\mu} \\ K^{+}_{\mu} \\ K$$

Quark CP violation

$$\left(\overline{u}\ \overline{c}\ \overline{t}\right)_{L}\gamma^{\mu}\begin{pmatrix}V_{ud}\ V_{us}\ V_{ub}\\V_{cd}\ V_{cs}\ V_{cb}\\V_{td}\ V_{ts}\ V_{tb}\end{pmatrix}\begin{pmatrix}d\\s\\b\end{pmatrix}_{L}W^{+}_{\mu}$$

Quark CP violation

Some flavoured mesons

charged:

 $egin{aligned} & K^+ \sim \overline{s}u, \quad D^+ \sim c\overline{d}, \quad D^+_s \sim c\overline{s}, \quad B^+ \sim \overline{b}u, \quad B^+_c \sim \overline{b}c, \ & K^- \sim s\overline{u}, \quad D^- \sim \overline{c}d, \quad D^-_s \sim \overline{c}s, \quad B^- \sim b\overline{u}, \quad B^-_c \sim b\overline{c}, \end{aligned}$

neutral:

 $\begin{array}{ll} K\sim \overline{s}d, & D\sim c\overline{u}, & B_d\sim \overline{b}d, & B_s\sim \overline{b}s, \\ \overline{K}\sim s\overline{d}, & \overline{D}\sim \overline{c}u, & \overline{B}_d\sim b\overline{d}, & \overline{B}_s\sim b\overline{s}, \end{array}$

The neutral K, D, B_d and B_s mesons mix with their antiparticles, \overline{K} , \overline{D} , \overline{B}_d and \overline{B}_s thanks to the weak interaction (quantum-mechanical two-state systems).

Examples of Quark Flavour Changing Processes

Flavour changing penguin

- $b \rightarrow sl^+l^-$ transitions are rare in the SM (no tree level contributions: GIM, CKM, in some cases helicity suppressed)
- ideally suited for indirect New Physics searches (indirectly sensitive to energy scales O(100TeV))

Anomalies in b quark transitions

- five different **experiments**: ATLAS, BABAR, BELLE, CMS, **LHCb**
- vastly different collision environments requiring different analysis strategies: hadronic (abundant) VS leptonic (clean)
- processes with different SM contributions: tree level semi-leptonic decays, loop level FCNC transition
- many clean observables: angular observables, branching fraction ratios

LFU tests with $B \rightarrow K(^*)\mu\mu$ and $B \rightarrow K(^*)ee$ decays: R(K) and R(K*)

 Theoretical uncertainties on the exclusive B→K(*)Il branching fractions are reduced to a per-mille level in ratios (hadronic effects cancel):

$$R(K) = \frac{B^+ \to K^+ \mu^+ \mu^-}{B^+ \to K^+ e^+ e^-} \quad R(K^*) = \frac{B^0 \to K^{*0} \mu^+ \mu^-}{B^0 \to K^{*0} e^+ e^-}$$

- SM, R(K) and $R(K^*)$ expected to be close to unity.
- Sensitive to new neutral and heavy gauge bosons, lepto-quarks, Z' models.

R(K) and R(K*) results

LHCb focusses on the q^2 regions with reliable theoretical predictions and small contributions from the resonant modes. Precision limited by statistics.

Siim Tolk

R(D*) and R(D) results

Tree level semi-leptonic $b \rightarrow clv$ transitions are excellent test modes for charged currents:

R(D^{*}) and R(D) results Combined R(D^{*}) and R(D) significance is **4.1** σ w.r.t SM (R(D^{*}) alone 3.4 σ)

Siim Tolk

Introduction to Neutrinos

Where do neutrinos appear in nature?

Nuclear Reactors

Particle accelerator

The atmosphere (Cosmic Rays)

Earth's crust (Natural radioactivity)

Sun

Supernova (Star collapse) SN 1987A ✓

Astrophysical accelerator

Neutrinos from the Sun

Hans Bethe (1906–2005, Nobel prize 1967) Thermo-nuclear reaction chains (1938)
First measurement of neutrinos from the Sun

Inverse beta decay ("Neutrino capture")

Homestake Solar neutrino-Observatory (1967–1994)

Physics Nobel Prize 2002 for Neutrino-Astronomy

Ray Davis Jr. (1914–2006)

Masatoshi Koshiba (*1926)

" for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos"

Results of Chlorine Experiment (Homestake)

Average (1970–1994) $2.56 \pm 0.16_{stat} \pm 0.16_{sys}$ SNU (SNU = Solar Neutrino Unit = 1 Absorption / sec / 10³⁶ Atoms) Theoretical Prediction 6–9 SNU "Solar Neutrino Problem" since 1968

Neutrino-Oscillations

Pontecorvo & Gribov (1968 "Solar neutrino problem")

• Neutrinos are quantum superpositions of mass states

$$v_e = +\cos \Theta v_1 + \sin \Theta v_2$$
$$v_\mu = -\sin \Theta v_1 + \cos \Theta v_2$$

• Different propagation speeds gives neutrino oscillations

Detecting neutrinos in water

Illustration: O Johan Jarnestad/The Royal Swedish Academy of Sciences

Super-Kamiokande Detector (since 1996)

0

ú

Atmospheric Neutrino Oscillations (1998)

Atmospheric neutrino oscillations show characteristic L/E variation

The Official Web Site of the Nobel Prize

First neutrinos from nuclear reactors (20th July 1956)

Anti-Electron Neutrinos from beta decay of fission products in Hanford Nuclear reactor

3 Gammas in coincidence

Modern Reactor Experiments

Long-Baseline (LBL) Experiments

K2K Experiment (KEK to Kamiokande) measured precise neutrino oscillation parameters.

Since then other LBL Experiments:

- Minos (US)
- Opera (Europe)
- T2K (Japan)
- Nova (US)

Tsukuba to Kamioka (T2K) currently running experiment

World LBL experiments

Neutrino Mass and Mixing

The 6 observables in neutrino oscillations

 $\label{eq:starsest} \begin{array}{l} \mbox{ \ \ } \mbox{ \ \ } \mbox{ \ } \$

Lepton Mixing Angles

CP Violating Phase

Lepton Mixing Matrix

PMNS and CKM mixing

$$\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

For Majorana neutrinos $\rightarrow \times \operatorname{diag}(1, e^{i\alpha_{21}/2}, e^{i\alpha_{31}/2})$

Same form for quarks and leptons (but very different angles)

A Brief History of Progress in Neutrino Physics since 1998 Atmospheric v_{μ} disappear, large θ_{23} (1998) SK Solar v_e disappear, large θ_{12} (2002) SK, SNO Solar v_e are converted to $v_{\mu} + v_{\tau}$ (2002) **SNO Mathematical Reactor anti-** v_e disappear/reappear (2004) Kamland Accelerator v_{μ} disappear (2006) MINOS Accelerator v_{μ} converted to v_{τ} (2010) **OPERA** Accelerator v_{μ} converted to v_{e} , θ_{13} hint (2011) T2K **Markov Reactor anti-** v_e disappear, θ_{13} meas. (2012) DB, Reno

Latest NuFIT Fit 3.2

NuFIT 3.2 (2018)

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 4.14)$		Any Ordering	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range	
$\sin^2 heta_{12}$	$0.307^{+0.013}_{-0.012}$	$0.272 \rightarrow 0.346$	$0.307^{+0.013}_{-0.012}$	$0.272 \rightarrow 0.346$	$0.272 \rightarrow 0.346$	
$ heta_{12}/^{\circ}$	$33.62_{-0.76}^{+0.78}$	$31.42 \rightarrow 36.05$	$33.62_{-0.76}^{+0.78}$	$31.43 \rightarrow 36.06$	$31.42 \rightarrow 36.05$	
$\sin^2 heta_{23}$	$0.538\substack{+0.033\\-0.069}$	0.418 ightarrow 0.613	$0.554\substack{+0.023\\-0.033}$	0.435 ightarrow 0.616	0.418 ightarrow 0.613	
$ heta_{23}/^{\circ}$	$47.2^{+1.9}_{-3.9}$	$40.3 \rightarrow 51.5$	$48.1^{+1.4}_{-1.9}$	$41.3 \rightarrow 51.7$	$40.3 \rightarrow 51.5$	
$\sin^2 heta_{13}$	$0.02206\substack{+0.00075\\-0.00075}$	$0.01981 \to 0.02436$	$0.02227^{+0.00074}_{-0.00074}$	$0.02006 \rightarrow 0.02452$	$0.01981 \to 0.02436$	
$ heta_{13}/^{\circ}$	$8.54_{-0.15}^{+0.15}$	$8.09 \rightarrow 8.98$	$8.58^{+0.14}_{-0.14}$	$8.14 \rightarrow 9.01$	$8.09 \rightarrow 8.98$	
$\delta_{ m CP}/^{\circ}$	234_{-31}^{+43}	$144 \rightarrow 374$	278^{+26}_{-29}	$192 \rightarrow 354$	$144 \rightarrow 374$	
$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.40^{+0.21}_{-0.20}$	$6.80 \rightarrow 8.02$	$7.40^{+0.21}_{-0.20}$	$6.80 \rightarrow 8.02$	$6.80 \rightarrow 8.02$	
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.494^{+0.033}_{-0.031}$	$+2.399 \rightarrow +2.593$	$-2.465^{+0.032}_{-0.031}$	$-2.562 \rightarrow -2.369$	$ \begin{bmatrix} +2.399 \to +2.593 \\ -2.536 \to -2.395 \end{bmatrix} $	
$\Delta m_{3l}^2 = m_3^2 - m_1^2 \qquad \Delta m_{3l}^2 = m_3^2 - m_2^2$						

 $\Delta m_{3l} = m_3 - m_1$

Quark vs Lepton mixings (again)

	$ heta_{12}$	θ_{23}	$ heta_{13}$	δ
Quarks	$\underset{\pm 0.1^{\circ}}{13^{\circ}}$	$2.4^{\circ}_{\scriptscriptstyle{\pm 0.1^{\circ}}}$	$\underset{\pm 0.05^\circ}{0.2^\circ}$	$70^{\circ}_{\scriptscriptstyle{\pm5^{\circ}}}$
Leptons	$\underset{\scriptscriptstyle{\pm1^\circ}}{34^\circ}$	$\underset{^{41^\circ\pm1^\circ}_{50^\circ\pm1^\circ}}{45^\circ}$	$8.5^{\circ}_{\scriptscriptstyle \pm 0.15^{\circ}}$	$-90^{\circ}_{\pm50^{\circ}}$

Open Questions

1

Is CP violated in the leptonic sector? (Probably) Is the atmospheric angle in first or second octant? Are neutrino masses NO or IO ? (NO preferred) What is the lightest neutrino mass? Are neutrino masses Dirac or Majorana?

News in Neutrino 2018

Super-K atmospheric (Y. Hayato)

T2K (M. Wascko)

NOvA (M. Sanchez)

Already some interesting indications:

→ NO favored by these 3 experiments at ~(1 ~ 2) sigma level each.

 \rightarrow These experiments give some favored δ_{CP} region(s).

Future experiments that will tell us the neutrino masses hierarchy

We would like to be convinced the neutrino mass ordering by consistent results from several different technologies/methods with > 3 σ CL from each exp.

...and the LBL experiments will tell us about leptonic CP violation - important to know because it is related to leptogenesis and the origin of matter-antimatter asymmetry

Future LBL Neutrino Experiments

Neutrino Oscillations in vacuum

$$egin{aligned} P_{lpha o eta} &= \delta_{lphaeta} - 4\sum_{i>j} ext{Re}(U^*_{lpha i} U_{eta i} U_{lpha j} U^*_{eta j}) \sin^2\left(rac{\Delta m^2_{ij} L}{4E}
ight) \ &+ 2\sum_{i>j} ext{Im}(U^*_{lpha i} U_{eta i} U_{lpha j} U^*_{eta j}) \sin\left(rac{\Delta m^2_{ij} L}{2E}
ight), \ &rac{\Delta m^2 \, c^3 \, L}{4 \hbar E} = rac{ ext{GeV fm}}{4 \hbar c} imes rac{\Delta m^2}{ ext{eV}^2} rac{L}{ ext{km}} rac{ ext{GeV}}{E} pprox 1.27 imes rac{\Delta m^2}{ ext{eV}^2} rac{L}{ ext{km}} rac{ ext{GeV}}{E} \end{aligned}$$

Muon Neutrino Oscillations $P(\nu_{\mu} \to \nu_{e}; E, L) \equiv P_{1} + P_{\frac{3}{2}} + \mathcal{O}\left(\epsilon^{2}\right)$

CP phase Matter effect

 $\Delta = \Delta m_{31}^2 / 2E$

Electron appearance depends on CP phase $\epsilon \equiv \Delta m^2_{21}/\Delta m^2_{31} \approx 0.03$ r_A, δ change sign for antineutrinos $J_r = \cos \theta_{12} \sin \theta_{12} \cos \theta_{23} \sin \theta_{23} \sin \theta_{13}$
Future LBL experiments

Tokai to Hyper-Kamiokande

A gigantic detector to confront elementary particle unification theories and the mysteries of the Universe's evolution

(and maybe Korea)

Highly complementary experiments: DUNE T2HK

L = 1300 km

Flux [10⁻⁶/50 MeV/cm²/10²¹PoT]

L = 295 km

CP violation sensitivity

Neutrino Theory

The Electron Mass

Left-handed electron Ríght-handed electron

Neutrino Mass

Left-handed neutríno

 \mathbf{v}_L

Ríght-handed neutríno

Dirac $m_D \overline{\nu_L} \nu_R$

Majorana $m_{
u}\overline{\nu}_{L}\nu_{L}^{c}$

Left-handed neutríno \mathbf{v}_{L}^{c}

Ríght-handed antineutrino

Right-handed neutrino mass

Ríght-handed neutríno

Left-handed antineutrino

Is Majorana mass renormalisable?

Renormalisable $\lambda_V LL\Delta$ where Δ is light Higgs triplet with $\Delta L = 2$ operator $\lambda_V LL\Delta$ VEV < 8GeV from ρ parameter

Non-renormalisable $\frac{\lambda_{v}}{M}LLHH = \frac{\lambda_{v}}{M} \langle H^{0} \rangle^{2} \overline{v}_{eL} v_{eL}^{c}$ Weinberg

This is nice because it gives naturally small Majorana neutrino masses $m_{LL} \sim \langle H^0 \rangle^2 / M$ where M is some high energy scale

The high mass scale can be associated with some heavy particle of mass M being exchanged (can be singlet or triplet)

$$H \longrightarrow H \qquad H \qquad H \qquad H \qquad H$$

$$L \qquad L \qquad L$$

See-saw mechanisms

The three reasons for zero neutrino mass in the Standard Model

- 1. There are no right-handed neutrinos
- 2. There are no Higgs triplets of SU(2)
- 3. There are no non-renormalizable terms

Many (many) possibilities for the origin of neutrino mass...

Neutrino Mass Limits from the Laboratory

Many currently running experiments: GERDA, Majorana, EXO, CUORE, Kamland-Zen

This decay (on the left) is commonly observed [Double beta decay]

The rarest form of beta decay, if observed, would give a precise mass measurement

Double beta decay which emits anti-neutrinos Neutrinoless double beta decay This would also prove that the neutrino has a Majorana mass

Neutrino

<0.2 eV

mass

Experimental determination of neutrino mass

Extra dimensions

Planck brane

Overlap wavefunction of fermions with Higgs gives exponentially suppressed Dirac masses, depending on the fermion profiles

Loop Models of Neutrino Mass

R-Parity Violating SUSY

Majorana masses can be generated via RPV SUSY

Scalar partners of lepton doublets (slepton doublets) have same quantum numbers as Higgs doublets

 \Box If R-parity is violated then sneutrinos may get (small) VEVs inducing a mixing between neutrinos and neutralinos χ

 $m_{LL}^{v} \approx \frac{\langle \tilde{v} \rangle^{2}}{M_{\chi}} \approx \frac{MeV^{2}}{TeV} \approx eV$

Minimal Type I seesaw

Type I see-saw mechanism P. Minkowski (1977), Gell-Mann, Glashow, Mohapatra, Ramond, Senjanovic, Slanski, Yanagida (1979/1980), Schechter and Valle (1980)...

Type I

Type II see-saw mechanism (SUSY)

Lazarides, Magg, Mohapatra, Senjanovic, Shafi, Wetterich, Schechter and Valle...

Type III see-saw mechanism Foot, Lew, He, Joshi; Ma... Supersymmetric adjoint SU(5) Perez et al; Cooper, SFK, Luhn,...

See-saw w/extra singlets S

Inverse see-saw Wyler, Wolferstein; Mohapatra, Valle

 $\begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix} \quad \mathbf{M} \approx \mathsf{TeV} \twoheadrightarrow \mathsf{LHC}$ $M_{\nu} = M_D M^{T^{-1}} \mu M^{-1} M_D^T$

Linear see-saw $(0 M_D M_L)$

 $\begin{pmatrix} 0 & M_D & M_L \\ M_D^T & 0 & M \\ M_L^T & M^T & 0 \end{pmatrix}$ Malinsky, Romao, Valle

 $M_{\nu} = M_D (M_L M^{-1})^T + (M_L M^{-1}) M_D^T$ LFV predictions

Seesaw mechanism

Minkowski; Yanagida; Gell-Mann, Ramond, Slansky; Glashow; Mohapatra, Senjanivic; Schechter, Valle;...

$$\begin{pmatrix} \bar{\nu}_L & \bar{\nu}_R^c \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$
One family

 $m_D \ll M_R$ Seesaw assumption

 $m_{
u} \approx rac{m_D^2}{M_R} \sim 0.1 \mathrm{eV}$ Physical neutrino mass

 $m_{\nu} \approx \frac{m_{\text{Dirac}}^2}{M_R} = 0.1 \text{eV}$ $m_{\mathrm{Dirac}}^2(\mathrm{GeV}^2)$ 10⁵ GUT Quarks and steriles Charged Leptons 10^{-5} TeV→GUT steriles LHC, 10^{-10} **TeV** steriles Nu-MSM, 10^{-15} **GeV** steriles $M_R(\text{GeV})$ WDM, keV steriles LSND, $10^5 \quad 10^{10}$ 10^{15} 1 eV steriles

 $m_{\rm Dirac}^2$ $0.1 \mathrm{eV}$ $m_{\nu} \approx$ M_R $m_{\rm Dirac}^2 ({\rm GeV}^2)$ 10^{6} mWhich Dirac m_b^2 1000 Vanilla Mass 2 Leptogenesis m^2_{-} suggests 0.001 $M_{R} \sim 10^{10} \text{ GeV}$ 10^{-6} $M_R(\text{GeV})$ 10^{10} 10^{7} 10^{13} **n**16

Two right-handed neutrinos: the Littlest Seesaw

$$\begin{split} m_D &= \begin{pmatrix} 0 & b \\ a & 3b \\ a & b \end{pmatrix} \qquad M_R = \begin{pmatrix} M_{\rm atm} & 0 \\ 0 & M_{\rm sol} \end{pmatrix} \\ m_\nu &= m_D \frac{1}{M_R} m_D^T \qquad \text{seesaw formula in matrix form} \end{split}$$

$$m_{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$$

$$m_a = \frac{a^2}{M_{\rm atm}} \qquad m_b = \frac{b^2}{M_{\rm sol}}$$

The Littlest Seesaw

