Electroweak precision measurements

Ulla Blumenschein, QMUL London

27/06/18

1

Standard Model of Elementary Particles

Ulla Blumenschein, DIS 2018, Kobe

27/06/18

2

Measuring masses

m(W) = 80.385 ± 0.015 GeV	0.019 %
m(Z) = 91.1876 ± 0.0021 GeV	0.0023 %
$m(top) = 172.44 \pm 0.49 \text{ GeV}$	0.28 %
$m(b) = 4.18 \pm 0.04 \text{ GeV}$	0.96 %
$\begin{array}{ll} m(e) = & 0.5109989461 \pm 0.0000000031 \ \mbox{MeV} \\ m(\mu) = & 105.6583745 \pm 0.0000024 \ \mbox{MeV} \\ m(tau = & 1776.86 \pm 0.12 \ \mbox{MeV} \end{array}$	0.00000061 % 0.0000023 % 0.0067 %
m(pi+-) = 139.57061 ± 0.00024 MeV	0.00017 %
m(pi0) = 134.9770 ± 0.0005 MeV	0.00027 %
m(K+-) = 493.677 ± 0.016 MeV	0.0032 %

The Higgs potential V (\$) $Im(\phi)$

$$V_0 = -\frac{m_0^2}{2}|H_0|^2 + \lambda_0|H_0|^4$$

 $Re(\phi)$

$$M_{H}^{2}=2\lambda v^{2}$$

Ulla Blumenschein, DIS 2018, Kobe

27/06/18

4

$$m_H = 125.09 \pm 0.24 \text{ GeV}$$

= 125.09 ± 0.21 (stat.) ± 0.11 (syst.) GeV Precision: 0.2%

27/06/18

1

$$V_0 = -\frac{m_0^2}{2}|H_0|^2 + \lambda_0|H_0|^4$$

$$\lambda \doteq 0.13$$

Ulla Blumenschein, DIS 2018, Kobe

6

27/06/18

$$\lambda(H) = \lambda(M_H) + rac{1}{4\pi^2} \Big(-6rac{m_t^4}{v^4} + 24 \,\lambda(M_H)^2 + ... \Big) \ln(rac{H}{M_H})$$

Ulla Blumenschein, DIS 2018, Kobe

27/06/18

9

Example: ATLAS: lepton+jets channel, 8TeV data

Ulla Blumenschein, DIS 2018, Kobe

14

15

- 1) Preselection
- 2) Full reconstruction of the event
- BDT to separate wellreconstructed events from wrongly matched events

- 1) Preselection
- 2) Full reconstruction of the event
- BDT to separate wellreconstructed events from wrongly matched events
- 4) Combined template fit of the top mass, the jet energy scale and the b-jet energy scale

- 1) Preselection
- 2) Full reconstruction of the event
- BDT to separate wellreconstructed events from wrongly matched events
- 4) Combined template fit of the top mass, the jet energy scale and the b-jet energy scale

- 1) Preselection
- 2) Full reconstruction of the event
- BDT to separate wellreconstructed events from wrongly matched events
- 4) Combined template fit of the top mass, the jet energy scale and the b-jet energy scale, using the reconstructed top mass, the reconstructed W mass and the b-jet/light jet transverse momentum ratio

Top mass: uncertainties

		m _{top} [GeV]				
		$\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$				
	Event selection	Standard	Standard	BDT		
	Result	172.33	171.90	172.08		
	Statistics	0.75	0.38	0.39		
	- Stat. comp. (m_{top})	0.23	0.12	0.11		
	- Stat. comp. (JSF)	0.25	0.11	0.11		
	- Stat. comp. (bJSF)	0.67	0.34	0.35		
	Method	0.11 ± 0.10	0.04 ± 0.11	0.13 ± 0.11		
	Signal Monte Carlo generator	0.22 ± 0.21	0.50 ± 0.17	0.16 ± 0.17		
	Hadronisation	0.18 ± 0.12	0.05 ± 0.10	0.15 ± 0.10	1	
	Initial- and final-state QCD radiation	0.32 ± 0.06	0.28 ± 0.11	0.08 ± 0.11	r -	
	Underlying event	0.15 ± 0.07	0.08 ± 0.15	0.08 ± 0.15		
	Colour reconnection	0.11 ± 0.07	0.37 ± 0.15	0.19 ± 0.15		
	Parton distribution function	0.25 ± 0.00	0.08 ± 0.00	0.09 ± 0.01		
	Background normalisation	0.10 ± 0.00	0.04 ± 0.00	0.08 ± 0.00		
	W+jets shape	0.29 ± 0.00	0.05 ± 0.00	0.11 ± 0.00		
	Fake leptons shape	0.05 ± 0.00	0	0		
	Jet energy scale	0.58 ± 0.11	0.63 ± 0.02	0.54 ± 0.02	1	
	Relative b-to-light-jet energy scale	0.06 ± 0.03	0.05 ± 0.01	0.03 ± 0.01		
	Jet energy resolution	0.22 ± 0.11	0.23 ± 0.03	0.20 ± 0.04		
	Jet reconstruction efficiency	0.12 ± 0.00	0.04 ± 0.01	0.02 ± 0.01		
	Jet vertex fraction	0.01 ± 0.00	0.13 ± 0.01	0.09 ± 0.01	L I	
	<i>b</i> -tagging	0.50 ± 0.00	0.37 ± 0.00	0.38 ± 0.00		
	Leptons	0.04 ± 0.00	0.16 ± 0.01	0.16 ± 0.01		
	$E_{\mathrm{T}}^{\mathrm{miss}}$	0.15 ± 0.04	0.08 ± 0.01	0.05 ± 0.01		
	Pile-up	0.02 ± 0.01	0.14 ± 0.01	0.15 ± 0.01		
-	Total systematic uncertainty	1.03 ± 0.08	1.07 ± 0.10	0.82 ± 0.06		
Ulla Blumen	Total	1.27 ± 0.08	1.13 ± 0.10	0.91 ± 0.06	06/18	

Top mass: uncertainties

27/06/18

Higgs potential

Ulla Blumenschein, DIS 2018, Kobe

27/06/18

Indirect measurements

Higgs potential

Ulla Blumenschein, DIS 2018, Kobe

27/06/18

Ulla Blumenschein, DIS 2018, Kobe

27/06/18

Ulla Blumenschein, DIS 2018, Kobe

Ulla Blumenschein, DIS 2018, Kobe

27/06/18

Ulla Blumenschein, DIS 2018, Kobe

27/06/18

$$m_{W}^{2} \sin^{2} \theta_{W} = \frac{\pi \alpha}{\sqrt{2} G_{\mu}} \frac{1}{1 - \Delta r}$$

$$M_{W} = \frac{1}{\sqrt{2} G_{\mu}} \frac{1}{1 - \Delta r}$$

$$\Delta r = \Delta \alpha - \tan \theta_{W} \Delta \rho(m_{top}) + \Delta r_{rem}^{SM}(m_{top}, m_{H}) + \dots$$

Indirect predictions of m_W via EWK fit
 -> m_W probes consistency of SM
 Strongest constraints from m_W: Exp. precision (15 MeV or 0.02%)
 <-> precision of indirect prediction (8 MeV)

m_t [GeV]

Prexious mW measurements

W production

W hadronic recoil

arXiv:1701.07240

W transverse mass

arXiv:1701.07240

W transverse mass

arXiv:1701.07240

W mass: blinded

arXiv:1701.07240

W mass: unblinded

arXiv:1701.07240

Queen Mary

W mass: uncertainties

Dominating uncertainty from theory: pT(W) modeling, PDF

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

Theory uncertainties

Theory uncertainties

precisely measured pT(Z) -> prediction -> pT(W)

Theory uncertainties

W mass measurement

W mass measurement

28/06/18

28/06/18

54

$$Forward-Backward Asymmetry$$

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

$$\frac{d^3\sigma}{dm_{\ell\ell}dy_{\ell\ell}d\cos\theta^*} = \frac{\pi\alpha^2}{3m_{\ell\ell}s} \sum_q P_q \left[f_q(x_1, Q^2) f_{\bar{q}}(x_2, Q^2) + (q \leftrightarrow \bar{q}) \right]$$

$$P_q = e_\ell^2 e_q^2 (1 + \cos^2\theta^*) \Upsilon$$

$$+ e_\ell e_q \frac{2m_{\ell\ell}^2 (m_{\ell\ell}^2 - m_Z^2)}{\sin^2\theta_W \cos^2\theta_W [(m_{\ell\ell}^2 - m_Z^2)^2 + \Gamma_Z^2 m_Z^2]} [v_\ell v_q (1 + \cos^2\theta^*) + 2a_\ell a_q \cos\theta^*] \quad \gamma/Z$$

$$+ \frac{m_{\ell\ell}^4}{\sin^4\theta_W \cos^4\theta_W [(m_{\ell\ell}^2 - m_Z^2)^2 + \Gamma_Z^2 m_Z^2]} [(a_\ell^2 + v_\ell^2)(a_q^2 + v_q^2)(1 + \cos^2\theta^*) + 8a_\ell v_\ell a_q v_q \cos\theta^*].$$

28/06/18

The Weinberg angle

Ulla Blumenschein, DIS 2018, Kobe

Neutral Rrell-Yan production

A_{EB}: dilution in pp colliders

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

Z/γ boosted -> work in specific lepton rest frame (Collin Sopers frame)

Polar angle θ^* (lepton - quark) -> from Z/ γ direction -> dilution

Ulla Blumenschein, DIS 2018, Kobe

A_{EB}: dilution in pp colliders

arXiv:1806.00863

28/06/18

Template fit

Template-fit (Powheg+Pythia8 templates) -> PDF & $sin^2\theta_w$

arXiv:1806.00863

Results

arXiv:1806.00863

Uncertainties comparable with Tevatron experiments Statistical uncertainties dominating component

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23101 \pm 0.00036 \,(\text{stat}) \pm 0.00018 \,(\text{syst}) \pm 0.00016 \,(\text{theo}) \pm 0.00031 \,(\text{PDF}),$

Results

arXiv:1806.00863

The ATLAS experiment

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} = \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{1}{\sigma_{y}}\frac{\mathrm{d}\sigma_{y}(p_{\mathrm{T}})}{\mathrm{d}p_{\mathrm{T}}}\right]$$

- Rapidity distribution and angular coefficients:
 - NNLO fixed-order QCD
 - PDF : CT10nnlo
- p_T distribution at given rapidity
 - Pythia AZ. Tuned parameters : $\alpha_{s^{ISR}}$; intrinsic k_{T} ; ISR cut-off
 - PDF used in the parton shower : CTEQ6L1

Appendix

$$\cos\theta^* = \frac{2(P_1^+ P_2^- - P_1^- P_2^+)}{\sqrt{m_{\ell\ell}^2 (m_{\ell\ell}^2 + p_{\mathrm{T},\ell\ell}^2)}} \times \frac{p_{z,\ell\ell}}{|p_{z,\ell\ell}|}$$

$$v_{\rm f}/a_{\rm f} = 1 - 4|Q_{\rm f}|\sin^2\theta_{\rm eff}^{\rm f}$$

Ulla Blumenschein, DIS 2018, Kobe

• The uncertainty in the W p_{τ} distribution, for given Z p_{τ} distribution (cont'd)

