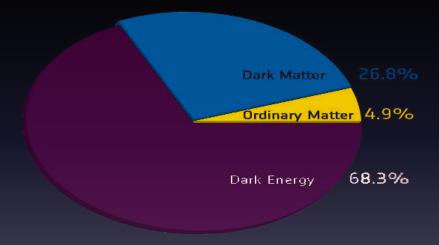
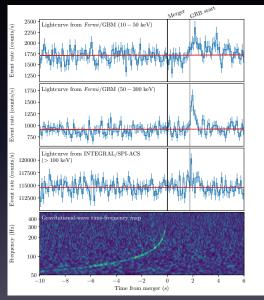


The greatest mystery in cosmology



2/3 of the effective energy density is a cosmological constant Λ , a "dark energy," or some modification to gravity.

What does LIGO tell us?



Abbott, et al., arXiv:1710.05834, Ap. J. (in prep)

LIGO, Virgo, Fermi, and INTEGRAL: $\Delta t = 1.74 \text{ sec}$

1 Mpc/ $c \approx 10^{14}$ sec, so:

$$lpha_{GW} = rac{c_{GW}^2 - c^2}{c^2} \ \lesssim rac{ ext{few seconds}}{40 ext{ Mpc/}c} \ \sim 10^{-15}$$

Tuning?

- Δt from emission, escape?
- α_{GW} small only for z < 0.01?

What does LIGO tell us?

Most general scalar-tensor gravity with 2nd-order e.o.m.:

$$\begin{split} \mathcal{S} &= \int d^4x \sqrt{-g} \left[\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 + \mathcal{L}_M \right] \\ \mathcal{L}_2 &= G_2 \qquad \mathcal{L}_3 = G_3 \square \phi \\ \mathcal{L}_4 &= G_{4,X} \left[(\square \phi)^2 - \nabla_\mu \nabla_\nu \phi \nabla^\mu \nabla^\nu \phi \right] + G_4 R \\ \mathcal{L}_5 &= -\frac{1}{6} G_{5,X} \left[(\square \phi)^3 - 3 \nabla^\mu \nabla^\nu \phi \nabla_\mu \nabla_\nu \phi \square \phi + 2 \nabla^\nu \nabla_\mu \phi \nabla^\alpha \nabla_\nu \nabla^\mu \nabla_\alpha \phi \right] \\ &+ G_5 G_{\mu\nu} \nabla^\mu \nabla^\nu \phi \end{split}$$

where the G_i are functions of ϕ and $X = -\frac{1}{2}\nabla_{\mu}\phi\nabla^{\mu}\phi$. Also, $G_{i,\phi}$ and $G_{i,X}$ are $\partial G_i/\partial \phi$ and $\partial G_i/\partial X$.

Velocity correction: $\alpha_{GW} \propto 2G_{4,X} - 2G_{5,\phi} - (\ddot{\phi} - \dot{\phi}H)G_{5,X}$

Baker, Bellini, Ferreira, Lagos, Noller, Sawicki, arXiv:1710.06394 Sakstein, Jain, arXiv:1710.05893

What does LIGO tell us?

Most general scalar-tensor gravity with 2nd-order e.o.m.:

$$\begin{split} S &= \int d^4x \sqrt{-g} \left[\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 + \mathcal{L}_M \right] \\ \mathcal{L}_2 &= G_2 \qquad \mathcal{L}_3 = G_3 \Box \phi \\ \mathcal{L}_4 &= G_{4,X} \Big[(\Box \phi)^2 - \nabla_{\mu} \nabla_{\nu} \phi \nabla^{\mu} \nabla^{\nu} \phi \Big] + G_4(\phi) R \\ \mathcal{L}_5 &= -\frac{1}{6} G_{5,X} \Big[(\Box \phi)^3 - 3 \nabla^{\mu} \nabla^{\nu} \phi \nabla_{\mu} \nabla_{\nu} \phi \Box \phi + 2 \nabla^{\nu} \nabla_{\mu} \phi \nabla^{\alpha} \nabla_{\nu} \nabla^{\mu} \nabla_{\alpha} \phi \Big] \\ &+ G_5 G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi \end{split}$$

where the G_i are functions of ϕ and $X = -\frac{1}{2}\nabla_{\mu}\phi\overline{\nabla}^{\mu}\phi$. Also, $G_{i,\phi}$ and $G_{i,X}$ are $\partial G_i/\partial \phi$ and $\partial G_i/\partial X$.

Velocity correction: $\alpha_{GW} \propto 2G_{4,X} - 2G_{5,\phi} - (\ddot{\phi} - \dot{\phi}H)G_{5,X}$

Baker, Bellini, Ferreira, Lagos, Noller, Sawicki, arXiv:1710.06394 Sakstein, Jain, arXiv:1710.05893

$\alpha_{GW} = 0$, no tuning: What's left?

LIGO-preferred extensions to cosmological constant Λ:

Not-so-slow roll:

Conformal coupling $G_4(\phi)$ small to suppress $\partial G_N/\partial t$

- Quintessence: Wetterich 1988; Peebles, Ratra 1988 $G_2 = X + V(\phi)$. $W = P/p = \frac{X-V}{X+V} \neq 1$ observed cosmologically
- Cubic Galileon: Nicolis, Rattazzi, Trincherini 2008 $G_3 \propto X$, 5th force screened through kinetic term

Conformal coupling:

Rolling $\Delta \phi/M_{\rm Pl}\ll 1$ to suppress fifth force from $G_4(\phi)$

- Chameleons, f(R) gravity: Khoury, Weltman 2004 5th force screened through effective mass $m_{\rm eff} = V''$
- Symmetrons: Olive, Pospelov 2007; Hinterbichler, Khoury 2010 G_2 , G_4 invariant under $\phi \to -\phi$; 5th force screened through symmetry restoration

Screening of fifth forces

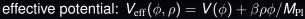
"Hide" 5th forces in dense regions such as the Solar System. Consider small perturbations about a background: $\phi = \bar{\phi} + \delta \phi$:

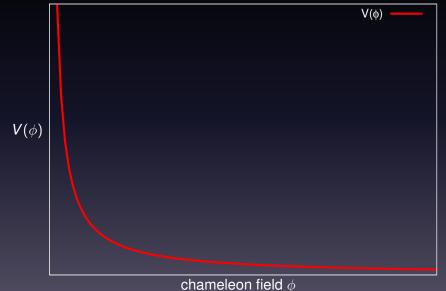
$$\left[Z(\bar{\phi})\Box - m(\bar{\phi})^{2}\right]\delta\phi = \frac{1}{M_{\rm Pl}}\beta(\bar{\phi})\ \delta\rho$$

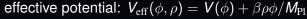
Chameleon screening: Increase m at high ρ . e.g., f(R) gravity. Reduces force range. Violates Equivalence Principle by making force density/geometry dependent.

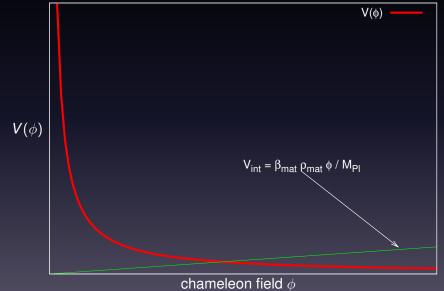
Kinetic screening: Increase Z at high ρ . *e.g.*, Galileons. Deviations from Poisson's equation in high-density regions.

Dynamical coupling: Decrease β at high ρ . *e.g.*, symmetrons. Uncoupled phase at high densities.

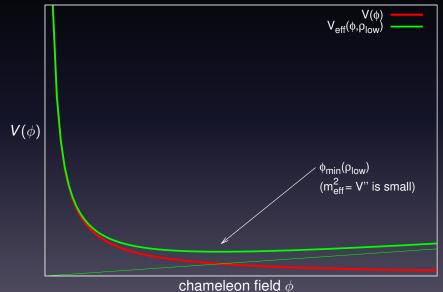




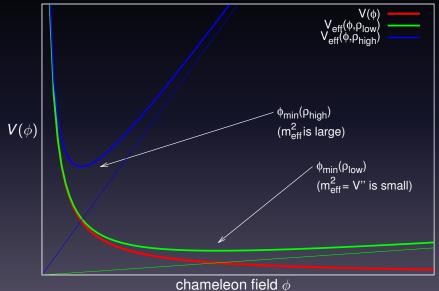




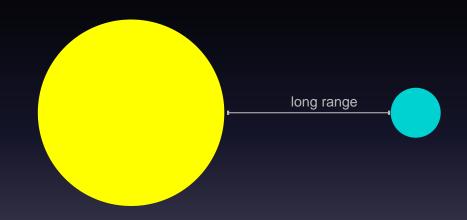
effective potential: $V_{\rm eff}(\phi,\rho) = V(\phi) + \beta \rho \phi/M_{\rm Pl}$



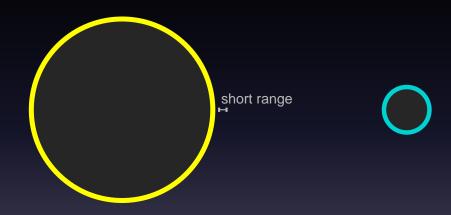
effective potential: $V_{\rm eff}(\phi,\rho) = V(\phi) + \beta \rho \phi / M_{\rm Pl}$



Effects of a large mass

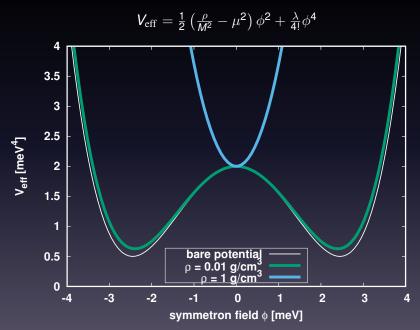


Effects of a large mass



- Compton wavelength (force range) $\propto 1/m$
- Thin-shell effect: ϕ "sees" outer shell of thickness $\sim 1/m$.

Symmetron screening



At which scale should we probe each model?

$$V(\phi) \propto \phi^n + \text{const.} \Rightarrow m_{\text{eff}} \propto \rho^{\frac{1}{2n-2}}$$
 (use lab for $n \lesssim -\frac{1}{2}, n > 2$)

1 le-10 $V(\phi) \propto \phi^n$ 1e-20 $V(\phi) \propto \phi^n$ 1e-40 $V(\phi) \propto \phi^n$ 1e-50 $V(\phi) \propto \phi^n$ 1e-50 1e-20 1e-10 1 density ρ [g/cm³]

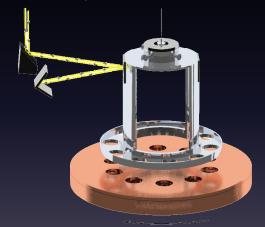
AU, PRD 86:102003(2012)[arXiv:1209.0211]

Finding hidden fifth forces in the lab

- force with $m_{\rm eff}$ best detected using objects of size $1/m_{\rm eff}$
- barrier between source and test masses weakens fifth force
- 3 chamber walls and surroundings contribute to screening
 - chameleons: consider effects of Earth, solar system, galaxy
 - * symmetrons: no forces unless chamber radius $\gg \pi/\mu$

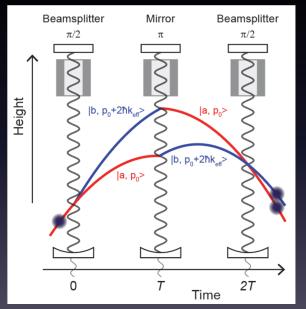
Fifth force tests using a torsion pendulum

Eöt-Wash Experiment



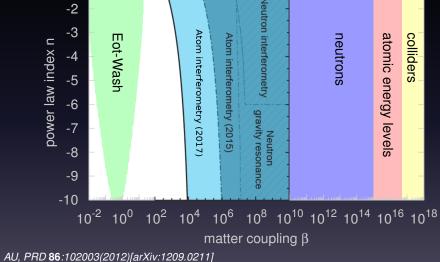
http://www.npl.washington.edu/eotwash

Fifth force tests using an atom interferometer



Jaffe, Haslinger, Xu, Hamilton, AU, Elder, Khoury, Müller, Nat. Phys. 13:938(2017)[arXiv:1612.05171]

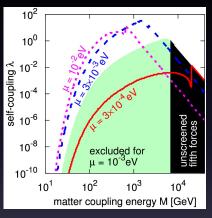
Constraints on $V(\phi) = M_{\Lambda}^{4-n} \phi^n \ (M_{\Lambda} = 2.4 \text{ meV})$

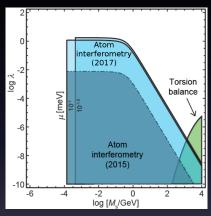


Adelberger,Heckel,Hoedl,Hoyle,Kapner,AU, PRL **98**:131104(2007)[arXiv:hep-ph/0611223]

Jaffe, Haslinger, Xu, Hamilton, AU, Elder, Khoury, Müller, Nat. Phys. 13:938(2017) [arXiv:1612.05171]

Constraints on symmetrons





Symmetron effective potential: $V_{\rm eff}=\frac{1}{2}\left(\frac{\rho}{M^2}-\mu^2\right)\phi^2+\frac{\lambda}{4!}\phi^4$ Eöt-Wash probes $\lambda\sim$ 1, $\mu\sim$ 10⁻³ eV (dark energy), $M\sim$ 1 TeV (beyond the Standard Model)

Interferometers extend constraints to lower μ , M

AU, PRL 110:031301(2013)[arXiv:1210.7804]

Jaffe, Haslinger, Xu, Hamilton, AU, Elder, Khoury, Müller, Nat. Phys. 13:938(2017)[arXiv:1612.05171]

Conclusions

- Astrophysics suggests two extensions to Λ: rolling models and conformally-coupled models.
- Chameleons and symmetrons are conformally-coupled models whose fifth forces are screened at high densities.
- 3 Laboratory experiments are close to the dark energy scale $(8\pi G_N/\Lambda)^{1/4} \approx 80~\mu \text{m}$ and are the best ways to probe certain classes of chameleon and symmetron models.
- 4 Carefully-designed torsion pendulum experiments and atom interferometers have excluded orders of magnitude in parameter space.