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We have a successful working model of the universe ...
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Beyond reasonable doubt

practically no spatial curvature
nearly scale-invariant initial spectrum
practically adiabatic initial conditions
Dark Energy and CDM



... but the universe had surprised us before ...
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... and there are reasons to keep an open mind about LCDM
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... and there are reasons to keep an open mind about LCDM

Does the vacuum gravitate?

e Lambda What sets the observed value of Lambda?
(vac) Z Opoint fuctuati (vac) (vac)
Ptheory = [Opoint fluctuations| + ppw’ + poep + -
¢ CDM particles

p(vac—i—A) ~ [10_3€V]4

obs




... and there are reasons to keep an open mind about LCDM

Does the vacuum gravitate?

e Lambda What sets the observed value of Lambda?
(vac) Z Opoint fuctuati (vac) (vac)
Ptheory = [Opoint fluctuations| + ppw’ + poep + -
¢ CDM particles

p(vac—i—A) ~ [10_3€V]4

obs

* General reasons:
— GRis yet to be tested on cosmological scales
— No theory of Quantum Gravity
— No theory of the Big Bang

e Lesser, specific problems:
— Tensions between datasets
— Missing satellites, (non)cuspy halos, ...



Questions we could ask in Cosmology

1. Is the expansion history of the universe consistent with Lambda?

What is the equation of state of Dark Energy?

2. Is there any evidence of modified gravity?

Violations of the equivalence principle
New gravitational interactions



The (effective) Dark Energy equation of state

ppE + 3H (ppE + ppE) =0

Constant Dark Energy (Lambda): PA = —pPA = const
wp = —1
1
Time-varying Dark Energy: pDE(a) = po exp [/ 3(1+ w(a ))

PDE(G)
pDE(a)

w(a) =



nature LETTE
aStI' OﬂOmy DOI: 10.1038/541550-017—056-52

Dynamical dark energy in light of the latest
observations

Gong-Bo Zhao®'?*, Marco Raveri*4, Levon Pogosian?®, Yuting Wang'?, Robert G. Crittenden®?,
Will J. Handley®’, Will J. Percival? Florian Beutler?, Jonathan Brinkmann?2, Chia-Hsun Chuang®'°,
Antonio J. Cuesta"?, Daniel J. Eisenstein™, Francisco-Shu Kitaura*'®, Kazuya Koyama?,
Benjamin L'Huillier ©¢, Robert C. Nichol?, Matthew M. Pieri”, Sergio Rodriguez-Torres®'®"°,
Ashley J. Ross??°, Graziano Rossi?, Ariel G. Sanchez??, Arman Shafieloo©'23, Jeremy L. Tinker?,

Rita Tojeiro?, Jose A. Vazquez?® and Hanyu Zhang'

H?(a)
Hg

= Qa* + Qya® + Qpg exp [/ 3(1+w(a))—-

G.-B. Zhao et al, arXiv:1701.08165, Nature Astronomy
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Fables of Reconstruction

* Impose a correlation on binned w(z)

can be derived from a broad class of theories
see e.g. M. Raveri, P. Bull, A. Silvestri, LP, arXiv:1703.05297, PRD

* Smooth features (well constrained by data)
not biased by the prior

* Rapid variations of w(z) (poorly constrained by data)
disfavoured by the prior

Crittenden, Zhao, LP, Samushia, Zhang, 1112.1693, JCAP’12
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Dynamical Dark Energy?

Dynamical dark energy is preferred
at a 3.5-sigma significance level based on
the improvement in the fit alone 10

AINE
(@)}

It resolves the tensions between the Planck
best fit LCDM model and the local estimates

- - - ALL12 B i
——ALL16 A '

il 3
LI, -

of H, and the high-z Ly-alpha BAO 5} ~~-DESk+ T,
6l e
Effectively, 4 additional degrees of freedom e
Z 4 o
Current Bayesian evidence is comparableto @ /_4;//"/4 B
that of LCDM, no preference for dynamics i Pt
./.Ar'/ ,.//
0 w.l:.—:i?‘e : T ]
Evidence increased since 2012 0.01 0.1 1
Op

Future data can conclusively confirm or rule out the
reconstructed dynamics of Dark Energy



Reconstructed Dark Energy Density
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Y. Wang, G.-B. Zhao and LP, in preparation



What could this be?

X e —

0.5}

A5 ALL12, Zhao et al. (201
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redshift z

General Relativity with Lam

S=/d4m\/—_g

PA = —PA = const
wp = pa/pa = —1

R — 2A} + EM(gp,u, ¢)



What could this be?

|—— ALL12, Zhao et al. (201
L ALL16
mm DESI++

redshift z

General Relativity with a minimally coupled scalar field (gudintessence)




What could this be?

"9 [——ALL12, Zhao et al. (201
L ALL16

redshift z
Modified gravity: a scalar-tensor theory

5= [y [ﬁ [US)R — 0" 60,6 — 2V(8)} + Lot (g1 )
Peft $?/2 —V(¢) +2HQ +

Pt ¢2/2+V(¢) —3HQ+ (1 — Q)pus

Weff =



Phenomenology of Scalar-Tensor Theories

Generalized Brans-Dicke models (e.g. “chameleon”, f(R), “symmetron”)

Varying

Gravitational
Coupling

S’=/d4a:\/——g

1
2

In the “Einstein” frame: g, = A_2(¢)g,“,

/d4x\/_

1
= 53" 0,00,6 — V(9) + Lus (f

— 59" 0u90,¢ — V(9) + Lm(guv; w)]

Modified Dynamics
Of Matter

/

"




Phenomenology of Scalar-Tensor Theories

“Spacetime tells matter how to move; matter tells spacetime how to curve.”

John A. Wheeler (1911-2008)

Photons and matter respond to different spacetimes

Non-relativistic matter

o sources the curvature perturbation @
o responds to the Newtonian potential W
o @ and ¥ are NOT the same in scalar-tensor theories T A(d
o feels a “fifth force” mediated by the scalar field f= V¥ — %@6¢
@
Photons

* respond to (®+W)/2
* do not feel a “fifth force”



Phenomenology of Scalar-Tensor Theories

vy = ¢
General Relat|V|ty k2 = 2 (#) :47TG(1,25,0
“Gmatter”
k22U — 47r a’dp
@ — . v
Modified Gravity b LU (e
V(55Y) - wberdn
2
“Glight”

A smoking gun of new gravitational physics

Gmatter ?é Glight or ¢ 75 \\/j




Gravitational Lensing

Planck



Galaxy Clustering

Redshift distortions
due to peculiar motion

k
Vi+V=—0
" aH - 2

Redshift z




Planck 2015 results. XIV. Dark energy and modified gravity

DE-related
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What would it say about gravity?
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Phenomenology of generalized Brans-Dicke models

Attractive force mediated by the scalar: f=_VU— dhldA(Cf?)ﬁé
& .
Range of the force set by the Compton length A,
Gmatter = A2G for \ > )\C A2 ~ 1 ,U/ Z |
Gratter > A°G for A<Ao & — Y —
2
Glight = A°G forall A ) N <1




Planck 2015 results. XIV. Dark energy and modified gravity

DE-related
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would rule out all GBD models
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More General Scalar-Tensor Theories

Gregory Horndeski, Talking About Gravity

G. W. Horndeski, Int. J. Theor. Phys (1974)
C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, PRD (2011)

The Horndeski Lagrangian

£2 - K(¢a X)a X = _¢;“¢;M/2
L3 = _G3(¢’ X)D¢s
L4 = Ga(¢, X)R+ Gax (9, X) [(09)° - 66" ,

: 1 :
L5 = G5(¢, X)Gud™ — ZCsx(9, X) |(O8)° + 20" 6" ba* — 3¢ ¢ 09)



Phenomenology of Horndeski theories: Speed of Gravity

The speed of gravitational waves can be different from the speed of light

M?2 /. 1 o
S = / dtd’za’ [other terms + 4* (h?p — Z;T (VhT)z)]

ar = 2X (2G4, x — 2G5 ¢ — (¢ — ¢H)Gs x )M 2

Modified speed of gravity if G, , is not zero, or G5 is not constant
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Gravitational Waves and Gamma-Rays from a Binary
Neutron Star Merger:. GW170817 and GRB 170817A

B. P. Abbott3, R. Abbott3, T. D. Abbott?, F. Acernese®®, K. Ackley’:8, C. Adams®, T. Adams1, P. Addesso?,
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Abstract

On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO
and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by
the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the
International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous

temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0 x 10-%.
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Dark Energy after GW170817 arXiv.org > astro-ph > arXiv:1710.05893
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(Submitted on 16 Oct 2017) Astrophysics > Cosmology and Nongalactic Astrophysics
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Implications of GW170817 and GRB170817A

Modified Gravity theories predicting a different speed of Gravity
at low redshifts (0<z<0.01) are ruled out

Self-accelerating models, e.g. Galileons, are severely constrained

The speed of Gravity can still vary at 0.01<z<1000 ...



Phenomenology of Horndeski theories: X-u

The Super-Compton Limit: A >> A.

2
m o
o = 3 (1)
0 M2 + 5
B 1
Yo = 1+ ar
2
m
po = F?(UFOZT)

Y F M on super-Compton scales would signal a modified speed of GW

LP & Silvestri, arXiv:1606.05339, PRD



Phenomenology of Horndeski theories: X-u

The Sub-Compton Limit: A << A

9 7 Fifth force

Conjecture: expect X-1 and u-1 to be of the same sign

LP & Silvestri, arXiv:1606.05339, PRD



Horndeski models with c,,,=c at all times

=

>d|A/Y 10070
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S. Peirone, M. Raveri, LP, A. Silvestri, K. Koyama, in prep.



Horndeski models with c,,=c today
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Fig. 15. Marginalized posterior distributions for 68% and 95%
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S. Peirone, M. Raveri, LP, A. Silvestri, K. Koyama, in prep.



Large-structure phenomenology with X and u

e ¥Y=1and u=1 consistent with LCDM and
many theories from Horndeski class

e Y#+1orpu<l disfavours generalized Brans-Dicke theories
(e.g. f(R), chameleon, symmetrons)

e XFu rules out Cubic Galileons
*(¥—-1)(u-1) <0 strongly disfavours all Horndeski theories

* additional information if scale-dependence is detected in X or u

LP & Silvestri, arXiv:1606.05339, PRD
S. Peirone, M. Raveri, LP, A. Silvestri, K. Koyama, in prep.



Summary

The universe surprised us before

There are good reasons to keep an open mind about LCDM
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Summary

The data seems to prefer less dark energy density in the past
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o suggests modified gravity or interaction between CDM and Dark Energy
o good reasons to probe large scale structure in the 1<z<3 range



Euclid

Mapping the geometry
of the dark Universe

Summary

Dark Energy Survey

Future surveys, such as Euclid and LSST, can constrain many degrees of
freedomof w, ¥ and u

The challenge for theorists is to find meaningful questions such
phenomenological tests can answer

It is possible to rule out large classes of modified gravity models by testing
the mutual consistency of w, ¥ and u




Generalized Brans-Dicke models
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S. Peirone, M. Raveri, LP, A. Silvestri, K. Koyama, in prep.
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