
Exploiting experimental data to constrain exotic 
dark matter scenarios

Suchita Kulkarni

Don’t shoot for the stars, we already know what’s in there. Shoot for the 
space in between because that’s where the real mystery lies. 


- Vera Rubin
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What does the blob do?

What’s inside the blob?

What’s outside 
the blob?
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Detection avenues

• Direct and indirect detection of dark matter are crucial avenues to search for 
dark matter 


• Go beyond and complement direct searches for dark matter at the LHC


• Question: how can we maximally exploit the potential of current experiments 
to constrain exotic interactions in dark matter sector?


• Both direct and indirect detection search strategies are prone to 
uncertainties in astrophysical environment 


• Identification of new effects and realistic evaluation both matters
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Additional interactions due to blob
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DM, neutrinos at direct detection

• Dark matter event rate at direct detection experiments 
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Direct detection with light mediators

> Event rates in direct detection experiments for heavy mediators
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• Neutrino event rate at direct detection experiments 
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Figure 4: Left (right) panel shows the energy spectra of the most relevant neutrino backgrounds for a Ge (Xe) type detector.
Shown are a WIMP signal (black solid line), the total coherent neutrino scattering (CNS) background contribution (blue dashed
line), standard electroweak neutrino-electron interaction (red line) and the contribution from the neutrino magnetic moment
(cyan lines). Dashed red and cyan lines (dark and light) correspond to the consideration of an electron rejection factor of 99.5%
and 105 for a XENON-like and Ge-based CDMS-like experiment respectively. Dark and light cyan curves correspond to the
experimental and theoretical upper limits on the neutrino magnetic moment respectively.

where me is the electron mass, gv and ga are the vectorial
and axial coupling respectively and are defined such that :

gv = 2 sin2 θw −
1

2
ga =

1

2
. (6)

In the particular case νe + e → νe + e, the interference
due to the additional charged current contribution im-
plies a shift in the vectorial and axial coupling constants
such that gv,a → gv,a + 1. One can easily derive that the
νe + e → νe + e cross section is about one order of ma-
gnitude larger than in the case of νl + e → νl + e (where
l = µ, τ). Hence, it is important to consider the neutrino
oscillation from the solar core to the Earth-based detec-
tor when computing this neutrino-electron background.
It has been shown in Ref. [15] that the survival probabi-
lity of νe below 1 MeV is fairly constant in energy and
equal to 0.55. The remaining component is distributed
between νµ and ντ which have the same expression of
the cross section.

2. Neutrino magnetic moment

As neutrinos oscillate, they must have a non-vanishing
mass and sufficiently large mixing with each other. In the
case of a Dirac neutrino, the extension of the standard
model in which neutrinos are massive naturally provides
a small but nonzero neutrino magnetic moment. This re-
sults in an increase of the total neutrino-electron scatte-
ring cross section by the following contribution [37, 39] :

dσ(Eν , Er)

dEr
= µ2

ν

πα2

m2
e

[

1

Er
−

1

Eν

]

, (7)

where µν is the neutrino magnetic moment in units of
Bohr magneton µb = e/2me and α is the fine structure
constant. The simplest standard model prediction leads
to a very tiny magnetic moment of about µν ∼ 10−20µb

preventing any experiment from being sensitive to this
putative contribution. However, some more general ex-
tensions could predict neutrino magnetic moment up to
about µν ∼ 10−14µb where Majorana neutrinos gene-
rally have higher magnetic moment than Dirac neutrinos
[40, 41]. As the measurement of such process could the-
refore be an excellent probe for new physics beyond the
standard model, it is of great interest trying to measure
it. The strongest experimental upper limit on the neu-
trino magnetic moment coming from the GEMMA Colla-
boration is equal to 3.2× 10−11µb [42] (5× 10−12µb [38])
without (with) considering atomic effects. Evidence of
µν > 10−14µb would strongly be in favor of new physics
at the TeV scale or beyond and would imply that the
neutrino is Majorana [41].

D. Neutrino-induced background rate calculation

The calculation of the event rate as a function of the
recoil energy is given by :

dR

dEr
= N ×

∫

Emin
ν

dN

dEν
×

dσ(Eν , Er)

dEr
dEν (8)

where dN/dEν denotes the neutrino flux and N is the
number of target nuclei per unit of mass of detector ma-
terial. In the following, we will denote M and T as being
respectively the detector mass and the exposure time of
the experiment. Note that in the case of the neutrino-
induced electronic recoils, the event rate is multiplied by

https://drive.google.com/file/d/0B_Ry7cVRv14xV053Z3FSVjFnd0k/view
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Figure 1. One neutrino event contour lines for the two types of mediators, considering a Xe target
detector. We show on the left (right) panel three examples for the vector (scalar) mediator. We also
show the SM one neutrino event contour line (in blue) for comparison. The red star is a point for
which we will show the energy spectrum. The green region is excluded by LUX at 90% of C.L. [41].

limits, defined at 90% C.L. as the curve in which we obtain 2.3 DM events for the computed

exposure:

�
1⌫
�n =

2.3

E⌫(Eth)
R
Eth

dR

dER

���
�,��n=1

dER

. (3.18)

If we now take the lowest cross-section of all limits as a function of the DM mass,

we obtain the one neutrino event contour line, corresponding to the best background-

free sensitivity achievable for each DM mass for a one neutrino event exposure. Let us

stress that the one neutrino event contour line, as defined in this section, is computed

with a 100% detector e�ciency. The e↵ect of a finite detector e�ciency will be taken

into account in Sec. 5 when we will compute how the new exotic neutrino interactions can

a↵ect the discovery potential of direct detection DM experiments. Comparing eq. (3.18)

with Eqs. (3.12) and (3.15), we see that the simplified models introduced in Sec. 2 can

modify the one neutrino event contour line. In fact, such modifications have been studied

in specific models with light new physics e.g. in [10]. We show in Fig. 1 some examples

of a modified one neutrino event contour line for our models, fixing the values of the

parameters GV and GS as specified in the legends. These parameters have been chosen to

be still allowed by current data, see sections 4 and 5. The left panel of the figure describes

changes in the one neutrino event contour line in presence of a new vector mediator. As

will be explained below, it is possible to have cancellation between SM and exotic neutrino

interactions leading to a lowering of the contour line as shown for the case of GV = 0.3. It

is also worth recollecting that GV includes the SM contribution i.e. GV = 1 is the SM case.

For the vector case the one neutrino event contour line is e↵ectively a rescaling of the SM

case. figure 1 (right panel) on the other hand shows modification of the contour line for

a scalar mediator. Note that unlike in the vector scenario, the factor GS has a di↵erent

normalization. No significant change in the one neutrino event contour line is expected in

the scalar case.

– 9 –

-10 -8 -6 -4 -2 0 2 4 6 8 10
10-6

10-5

10-4

10-3

10-2

gV
� - gA

�

|g
V�
|

�V
-2 = 10-6 GeV-2, Current Limit

LUX

10 GeV

15 GeV

50 GeV

10-7 10-6 10-5
10-11

10-10

10-9

|gV
� - gA

�|

|g
V�
|

�V
-2 = 4 � GeV-2, Current Limit

gV
� - gA

� < 0

gV
� - gA

� > 0

LUX

-10 -8 -6 -4 -2 0 2 4 6 8 10
10-6

10-5

10-4

10-3

gV
� - gA

�

|g
V�
|

�V
-2 = 10-6 GeV-2, Future Sensitivity

L
U

X
-

Z
E

P
L

IN

D
A

R
W

IN

10-9 10-8 10-7 10-6
10-12

10-11

10-10

|gV
� - gA

�|

|g
V�
|

�V
-2 = 4 � GeV-2, Future Sensitivity

gV
� - gA

� < 0

gV
� - gA

� > 0
DARWIN

Figure 2. Current limits (top panels) and future sensitivity (bottom panels) on the parameters
of the vector model. The coloured region can be excluded at 90% C.L. by current LUX data [44]
(continuous lines) and by the future LUX-ZEPLIN [42] (dashed lines) and DARWIN [43] experi-
ments (dotted lines). The plots are for m� = 10 GeV (violet), 15 GeV (red) and 50 GeV (green)
for two di↵erent cases: ⇤�2

V = 10�6 GeV�2 (left) and ⇤�2
V =

p
4⇡ GeV�2 (right). For simplicity,

in the latter case we only show the DARWIN future sensitivity, since the LUX-ZEPLIN results are
qualitatively similar but a factor of ⇠ 4-10 less sensitive.

(violet), 15 GeV (red) and 50 GeV (green). We see that we can clearly distinguish two

regions: for ⇤�2
V

= 10�6 GeV�2, when |g⌫
V
� g

⌫

A
| . 3 � 4, the DM contribution is the

dominant one (in particular, as |g⌫
V
� g

⌫

A
| ! 0 the contribution to the neutrino floor is

at most the SM one), and sets |g�
V
| <⇠ 2 ⇥ 10�3 ( <⇠ 4 ⇥ 10�4 ) for m� = 10 (50) GeV.

On the other hand, for larger values of |g⌫
V
� g

⌫

A
|, the number of neutrino events rapidly
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• Exotic neutrino interaction can lead to measurable effects at the direct 
detection experiments 


• Next generation direct detection experiments can put constraints on 
combined DM - SM and neutrino SM interactions
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Figure 1. One neutrino event contour lines for the two types of mediators, considering a Xe target
detector. We show on the left (right) panel three examples for the vector (scalar) mediator. We also
show the SM one neutrino event contour line (in blue) for comparison. The red star is a point for
which we will show the energy spectrum. The green region is excluded by LUX at 90% of C.L. [41].
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modify the one neutrino event contour line. In fact, such modifications have been studied
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will be explained below, it is possible to have cancellation between SM and exotic neutrino

interactions leading to a lowering of the contour line as shown for the case of GV = 0.3. It

is also worth recollecting that GV includes the SM contribution i.e. GV = 1 is the SM case.

For the vector case the one neutrino event contour line is e↵ectively a rescaling of the SM

case. figure 1 (right panel) on the other hand shows modification of the contour line for

a scalar mediator. Note that unlike in the vector scenario, the factor GS has a di↵erent
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the scalar case.

– 9 –

-10 -8 -6 -4 -2 0 2 4 6 8 10
10-6

10-5

10-4

10-3

10-2

gV
� - gA

�

|g
V�
|

�V
-2 = 10-6 GeV-2, Current Limit

LUX

10 GeV

15 GeV

50 GeV

10-7 10-6 10-5
10-11

10-10

10-9

|gV
� - gA

�|

|g
V�
|

�V
-2 = 4 � GeV-2, Current Limit

gV
� - gA

� < 0

gV
� - gA

� > 0

LUX

-10 -8 -6 -4 -2 0 2 4 6 8 10
10-6

10-5

10-4

10-3

gV
� - gA

�

|g
V�
|

�V
-2 = 10-6 GeV-2, Future Sensitivity

L
U

X
-

Z
E

P
L

IN

D
A

R
W

IN

10-9 10-8 10-7 10-6
10-12

10-11

10-10

|gV
� - gA

�|

|g
V�
|

�V
-2 = 4 � GeV-2, Future Sensitivity

gV
� - gA

� < 0

gV
� - gA

� > 0
DARWIN

Figure 2. Current limits (top panels) and future sensitivity (bottom panels) on the parameters
of the vector model. The coloured region can be excluded at 90% C.L. by current LUX data [44]
(continuous lines) and by the future LUX-ZEPLIN [42] (dashed lines) and DARWIN [43] experi-
ments (dotted lines). The plots are for m� = 10 GeV (violet), 15 GeV (red) and 50 GeV (green)
for two di↵erent cases: ⇤�2

V = 10�6 GeV�2 (left) and ⇤�2
V =

p
4⇡ GeV�2 (right). For simplicity,

in the latter case we only show the DARWIN future sensitivity, since the LUX-ZEPLIN results are
qualitatively similar but a factor of ⇠ 4-10 less sensitive.
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• Exotic neutrino interaction can lead to measurable effects at the direct 
detection experiments 


• Next generation direct detection experiments can put constraints on 
combined DM - SM and neutrino SM interactions

Post COHERENT results this scenario is tightly 

constrained
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Direct detection with light mediators

> Event rates in direct detection experiments for heavy mediators

Number
density

Velocity
integral

Scattering
cross section

Integrated flux

• Shape of differential event rate changes as soon as mediator mass is 
comparable to momentum transfer

important in the case of a light mediator than for a heavy one, because the recoil spectrum
falls even more steeply and therefore the sensitivity can be considerably improved by lowering
the threshold [42]. The excellent energy resolution, on the other hand, makes it possible to
extract the maximum amount of information on the particle physics properties of DM from
a successful discovery. In other words, cryogenic detectors are not only well-suited to explore
models with light DM particles (see e.g. [43]), but also to probe light mediators.

The projected progress for the low-threshold technology implies that parameter points
that are currently consistent with all experimental constraints may predict up to thousands
of events in near-future detectors. In this paper we study the amount of information that can
be extracted from such a signal, taking into account background uncertainties, astrophysical
uncertainties and degeneracies with other particle physics parameters. We demonstrate that
cryogenic experiments can probe the mediator mass precisely in the regions of parameter
space relevant for DM self-interactions, potentially enabling us to infer the behaviour of DM
on astrophysical scales with laboratory experiments.

Direct detection experiments in the context of self-interacting DM have been studied
previously [9, 23, 44, 45], most notably in ref. [46]. Our work di↵ers from these earlier
studies in that we do not attempt to derive existing constraints but rather to explore the
potential of future low-threshold detectors to infer the properties of self-interacting DM.
For this purpose, we implement several present and future direct detection experiments in a
realistic and e�cient manner, in order to perform parameter reconstruction with a number of
nuisance parameters. For similar studies in the context of e↵ective operators see refs. [47–55].

This paper is structured as follows. In section 2 we discuss the phenomenology of direct
detection experiments in the presence of light mediators. We review current and proposed
low-threshold experiments and calculate their sensitivity to long-range interactions in com-
parison to conventional direct detection experiments. Section 3 focusses on the potential of
low-threshold experiments to determine the particle physics parameters of the DM particle
and its interactions. We discuss the impact of experimental, theoretical and astrophysical
uncertainties, introduce suitable nuisance parameters to represent them and assess their im-
pact on our results. Finally, in section 4 we connect our results to the idea of self-interacting
DM. Additional details are provided in appendices A and B.

2 Direct detection with light mediators

We consider a DM particle of mass mDM scattering o↵ nuclei via the exchange of a mediator
with mass mmed. Throughout this paper we will focus on the case that the mediator has
spin-independent couplings to both nucleons and DM. The di↵erential event rate with respect
to recoil energy ER for DM scattering o↵ a given target isotope T with mass mT and mass
fraction ⇠T is then given by

dRT

dER
=

⇢0 ⇠T
2⇡mDM

g2 F 2
T (ER)

�
2mT ER + m2

med

�2 ⌘(vmin(ER)) (2.1)

with ⇢0 = 0.3 GeV/cm3 being the local DM density.
As long as the assumption of spin-independent interactions holds, the functional form

of the di↵erential event rate does not depend on the spin of the DM particle or the mediator
nor on whether or not the DM particle is its own anti-particle. The numerical pre-factors,
however, may di↵er for these di↵erent scenarios. We assume that these pre-factors have
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• Event rate at direct detection experiment for light mediators

• Measuring the signal event rate also needs accurate knowledge of shape 
and normalisation of backgrounds

important in the case of a light mediator than for a heavy one, because the recoil spectrum
falls even more steeply and therefore the sensitivity can be considerably improved by lowering
the threshold [42]. The excellent energy resolution, on the other hand, makes it possible to
extract the maximum amount of information on the particle physics properties of DM from
a successful discovery. In other words, cryogenic detectors are not only well-suited to explore
models with light DM particles (see e.g. [43]), but also to probe light mediators.

The projected progress for the low-threshold technology implies that parameter points
that are currently consistent with all experimental constraints may predict up to thousands
of events in near-future detectors. In this paper we study the amount of information that can
be extracted from such a signal, taking into account background uncertainties, astrophysical
uncertainties and degeneracies with other particle physics parameters. We demonstrate that
cryogenic experiments can probe the mediator mass precisely in the regions of parameter
space relevant for DM self-interactions, potentially enabling us to infer the behaviour of DM
on astrophysical scales with laboratory experiments.

Direct detection experiments in the context of self-interacting DM have been studied
previously [9, 23, 44, 45], most notably in ref. [46]. Our work di↵ers from these earlier
studies in that we do not attempt to derive existing constraints but rather to explore the
potential of future low-threshold detectors to infer the properties of self-interacting DM.
For this purpose, we implement several present and future direct detection experiments in a
realistic and e�cient manner, in order to perform parameter reconstruction with a number of
nuisance parameters. For similar studies in the context of e↵ective operators see refs. [47–55].

This paper is structured as follows. In section 2 we discuss the phenomenology of direct
detection experiments in the presence of light mediators. We review current and proposed
low-threshold experiments and calculate their sensitivity to long-range interactions in com-
parison to conventional direct detection experiments. Section 3 focusses on the potential of
low-threshold experiments to determine the particle physics parameters of the DM particle
and its interactions. We discuss the impact of experimental, theoretical and astrophysical
uncertainties, introduce suitable nuisance parameters to represent them and assess their im-
pact on our results. Finally, in section 4 we connect our results to the idea of self-interacting
DM. Additional details are provided in appendices A and B.

2 Direct detection with light mediators

We consider a DM particle of mass mDM scattering o↵ nuclei via the exchange of a mediator
with mass mmed. Throughout this paper we will focus on the case that the mediator has
spin-independent couplings to both nucleons and DM. The di↵erential event rate with respect
to recoil energy ER for DM scattering o↵ a given target isotope T with mass mT and mass
fraction ⇠T is then given by

dRT

dER
=

⇢0 ⇠T
2⇡mDM

g2 F 2
T (ER)

�
2mT ER + m2

med

�2 ⌘(vmin(ER)) (2.1)

with ⇢0 = 0.3 GeV/cm3 being the local DM density.
As long as the assumption of spin-independent interactions holds, the functional form

of the di↵erential event rate does not depend on the spin of the DM particle or the mediator
nor on whether or not the DM particle is its own anti-particle. The numerical pre-factors,
however, may di↵er for these di↵erent scenarios. We assume that these pre-factors have
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• Measuring the signal event rate also needs accurate knowledge of shape 
and normalisation of backgrounds

important in the case of a light mediator than for a heavy one, because the recoil spectrum
falls even more steeply and therefore the sensitivity can be considerably improved by lowering
the threshold [42]. The excellent energy resolution, on the other hand, makes it possible to
extract the maximum amount of information on the particle physics properties of DM from
a successful discovery. In other words, cryogenic detectors are not only well-suited to explore
models with light DM particles (see e.g. [43]), but also to probe light mediators.

The projected progress for the low-threshold technology implies that parameter points
that are currently consistent with all experimental constraints may predict up to thousands
of events in near-future detectors. In this paper we study the amount of information that can
be extracted from such a signal, taking into account background uncertainties, astrophysical
uncertainties and degeneracies with other particle physics parameters. We demonstrate that
cryogenic experiments can probe the mediator mass precisely in the regions of parameter
space relevant for DM self-interactions, potentially enabling us to infer the behaviour of DM
on astrophysical scales with laboratory experiments.

Direct detection experiments in the context of self-interacting DM have been studied
previously [9, 23, 44, 45], most notably in ref. [46]. Our work di↵ers from these earlier
studies in that we do not attempt to derive existing constraints but rather to explore the
potential of future low-threshold detectors to infer the properties of self-interacting DM.
For this purpose, we implement several present and future direct detection experiments in a
realistic and e�cient manner, in order to perform parameter reconstruction with a number of
nuisance parameters. For similar studies in the context of e↵ective operators see refs. [47–55].

This paper is structured as follows. In section 2 we discuss the phenomenology of direct
detection experiments in the presence of light mediators. We review current and proposed
low-threshold experiments and calculate their sensitivity to long-range interactions in com-
parison to conventional direct detection experiments. Section 3 focusses on the potential of
low-threshold experiments to determine the particle physics parameters of the DM particle
and its interactions. We discuss the impact of experimental, theoretical and astrophysical
uncertainties, introduce suitable nuisance parameters to represent them and assess their im-
pact on our results. Finally, in section 4 we connect our results to the idea of self-interacting
DM. Additional details are provided in appendices A and B.

2 Direct detection with light mediators

We consider a DM particle of mass mDM scattering o↵ nuclei via the exchange of a mediator
with mass mmed. Throughout this paper we will focus on the case that the mediator has
spin-independent couplings to both nucleons and DM. The di↵erential event rate with respect
to recoil energy ER for DM scattering o↵ a given target isotope T with mass mT and mass
fraction ⇠T is then given by
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with ⇢0 = 0.3 GeV/cm3 being the local DM density.
As long as the assumption of spin-independent interactions holds, the functional form

of the di↵erential event rate does not depend on the spin of the DM particle or the mediator
nor on whether or not the DM particle is its own anti-particle. The numerical pre-factors,
however, may di↵er for these di↵erent scenarios. We assume that these pre-factors have
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• Event rate at direct detection experiment for light mediators

• Measuring the signal event rate also needs accurate knowledge of shape 
and normalisation of backgrounds

important in the case of a light mediator than for a heavy one, because the recoil spectrum
falls even more steeply and therefore the sensitivity can be considerably improved by lowering
the threshold [42]. The excellent energy resolution, on the other hand, makes it possible to
extract the maximum amount of information on the particle physics properties of DM from
a successful discovery. In other words, cryogenic detectors are not only well-suited to explore
models with light DM particles (see e.g. [43]), but also to probe light mediators.

The projected progress for the low-threshold technology implies that parameter points
that are currently consistent with all experimental constraints may predict up to thousands
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studies in that we do not attempt to derive existing constraints but rather to explore the
potential of future low-threshold detectors to infer the properties of self-interacting DM.
For this purpose, we implement several present and future direct detection experiments in a
realistic and e�cient manner, in order to perform parameter reconstruction with a number of
nuisance parameters. For similar studies in the context of e↵ective operators see refs. [47–55].

This paper is structured as follows. In section 2 we discuss the phenomenology of direct
detection experiments in the presence of light mediators. We review current and proposed
low-threshold experiments and calculate their sensitivity to long-range interactions in com-
parison to conventional direct detection experiments. Section 3 focusses on the potential of
low-threshold experiments to determine the particle physics parameters of the DM particle
and its interactions. We discuss the impact of experimental, theoretical and astrophysical
uncertainties, introduce suitable nuisance parameters to represent them and assess their im-
pact on our results. Finally, in section 4 we connect our results to the idea of self-interacting
DM. Additional details are provided in appendices A and B.
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Contact interactions vs. light mediators

• Best sensitivity of cryogenic experiments for DM masses with light mediators ~ 10 
GeV


• Two orders of magnitude improvement for effective coupling g, corresponds to up 
to four orders of magnitude in terms of the scattering rate. 


• Thousands of events can be observed!!
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Figure 2. Constraints (at 90% CL) on the e↵ective coupling g for DM interacting via a light mediator.
These bounds assume that the mediator couples only to protons (✓ = 0).

with kinetic mixing. In terms of the kinetic mixing parameter ✏ and the mediator-DM
coupling gDM the e↵ective coupling g is then simply given by g = e ✏ gDM, where e =

p
4⇡↵

is the electromagnetic coupling. Di↵erent values of ✓ would typically enhance the sensitivity
of heavy targets like tungsten relative to light targets like oxygen, except for specific values
of ✓ that lead to destructive interference between proton and neutron contributions (see
section 3.2).

3 Reconstructing particle physics parameters

From figure 2 we make two central observations: first, if DM-nucleon scattering is due to
the exchange of light mediators, cryogenic experiments will have the best sensitivity to such
interactions up to DM masses of around 10 GeV. And second, compared to current bounds
this sensitivity will improve by up to two orders of magnitude in terms of the e↵ective coupling
g, corresponding to up to four orders of magnitude in terms of the scattering rate. These
observations immediately raise the question what we can hope to learn from a DM signal in
low-threshold direct detection experiments. In this section we will answer this question by
generating mock data and using this data to perform a parameter reconstruction.

To determine the compatibility of a specific particle physics hypothesis (characterized
by a set of parameters x) with a given set of data, we construct a likelihood function L(x)
as follows. For each individual experiment ↵, we calculate the Poisson likelihood

� 2 logL↵(x,y) = 2
X

i


R↵

i (x,y) + B↵
i (y) �N↵

i + N↵
i log

N↵
i

R↵
i (x,y) + B↵

i (y)

�
, (3.1)
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Figure 3. Allowed parameter regions (at 95% CL) reconstructed from a mock data set generated for
mDM = 2 GeV, mmed = 3 MeV and ✓ = 0 for the low-statistics scenario (left) and high-statistics sce-
nario (right panel). For the purpose of reconstruction, we assume that ✓, the DM velocity distribution
and the background normalization is known.

and CRESST-III respectively, while the grey region indicates the combined constraints. Note
that in these plots we do not yet take into account nuisance parameters related to background
or astrophysical uncertainties; these will be discussed later in this section.

A striking feature in the left panel of figure 3 is the accuracy of the parameter recon-
struction from SuperCDMS SNOLAB as compared to CRESST-III. This happens because
of two reasons: first, SuperCDMS SNOLAB is predicted to observe about four times more
events than CRESST-III and hence has much better statistics. Second, several target el-
ements contribute to the observed event rates in CRESST-III, leading to di↵erent ways in
which a good fit to the observed data can be obtained. While for the benchmark case that we
consider the event rate is dominated by scattering o↵ oxygen (because tungsten recoils are
below threshold), very similar recoil spectra are obtained for heavier masses and scattering
o↵ tungsten. This observation also explains the two di↵erent ‘branches’ found for heavy me-
diator masses. With su�cient statistics it becomes possible to distinguish between the two
possible scenarios and reject the solution with dominant scattering o↵ tungsten (see right
panel on figure 3).

Another interesting feature is that all reconstructed parameter regions exhibit a charac-
teristic ‘tilt’ in the sense that lighter mediators are necessary for fitting heavier DM masses
and vice versa. The origin of this shape is that heavier DM masses predict flatter recoil
spectra, while lighter mediators predict steeper recoil spectra. Increasing the DM mass while
decreasing the mediator mass and the e↵ective coupling g may therefore leave the recoil
spectra approximately unchanged. This degeneracy disappears once the mediator becomes
so light (or so heavy) that direct detection experiments are e↵ectively in the massless media-
tor limit (or the contact interaction limit). The recoil spectra then no longer depend on the
precise value of the mediator mass.

Finally we make the crucial observation that combining data from SuperCDMS SNO-
LAB and CRESST-III allows for a much more precise reconstruction of the mediator mass
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Low statistics (~900 events) High statistics (8000 events total)

• Let us assume, we know the backgrounds, there are no astrophysical 
uncertainties, also let’s assume DM couples to protons only


• Realistic treatment including detector resolution and background events


• Coupling g treated as nuisance parameter for reconstruction (fixed at max 
likelihood)
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mDM = 2GeV,mmed = 3MeV

g = 2⇥ 10�11, g = 6⇥ 10�11
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Let’s be realistic

• Include astrophysical uncertainty 


• Maxwell-Boltzmann distribution only


• Even when including the astrophysical uncertainty, the reconstruction is possible
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Figure 7. Same as figure 6 but including an additional nuisance parameter z to parametrize
astrophysical uncertainties (solid curves). See text for details. The dash-dotted curves correspond to
a reconstruction not taking into account astrophysical uncertainties, as already shown in figure 6.

simultaneously rescale all three velocities by a common factor z, this change is fully equivalent
to rescaling the DM mass by a factor z. We therefore introduce a new nuisance parameter z
and, rather than calculating the di↵erential event rate as a function of mDM, we calculate the
di↵erential event rate as a function of z mDM. We restrict z to lie in the range consistent with
observations. At 95% CL v0 is constrained to lie in the range

⇥
180km s�1, 280km s�1

⇤
while

the range for vesc is approximately
⇥
450km s�1, 650km s�1

⇤
, see [71] and references therein.

These ranges can be reproduced if we require 0.8  z  1.2 at 95% CL. We implement this
by means of a likelihood function for z given by

Lz =
1p

2⇡�z
exp

✓
�(z � 1)2

2�2
z

◆
(3.4)

with �z = 0.1 and include this extra factor in the total likelihood.
As in the case of ✓ it is possible that the likelihood has several local maxima for di↵erent

values of z, making it necessary to explicitly scan over all values of z within the relevant
range. Nevertheless, the simple way in which L depends on z means that it is not in fact
necessary to perform a two-dimensional scan over both ✓ and z, but rather that two separate
one-dimensional scans are su�cient. Figure 7 shows the impact of including astrophysical
uncertainties in addition to the uncertainties discussed above. As expected, the e↵ect of
varying z is essentially to reduce our ability to reconstruct the DM mass, while not a↵ecting
our ability to reconstruct the mediator mass. Figure 7 constitutes our central result for the
benchmark scenario: even when including a number of di↵erent nuisance parameters, an
accurate reconstruction of the DM and mediator masses is possible given su�cient statistics.

3.4 Alternative benchmark scenarios

In the discussion above we have introduced a number of nuisance parameters that should be
taken into account for a realistic assessment of the power of future low-threshold direct detec-
tion experiments. In addition to the two parameters that we are interested in reconstructing
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Self-interacting DM

• Within specific model (not a general conclusion)


• Fermionic DM, scalar mediator 


• Relic via dark sector freeze out and mediator decay via Higgs mixing
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Looking at the other side of blob
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DM with long lived mediator

• DM particle undergo annihilation into mediator, which is long lived

2

of continuum/spectral lines and anisotropies. This forms the basis for indirect detection searches.

Theoretical predictions for signal at indirect detection experiments depend on the underlying par-

ticle physics model, the DM density at the annihilation point and the understanding of cosmic ray

propagation.

In case, DM particles annihilate into long lived mediators, the situation changes. Let us consider

DM particle � annihilating into long-lived mediators � via t-channel. Mediators � in turn decays

into a pair of electrons. We assume, m� � m� � me. First and foremost, this leads to a non-

standard The mediators are hence relativistic at the time of annihilation and lead to anisotropic

distribution of cosmic rays. In this paper, we set up the formalism for computing the flux and the

anisotropies for decays of these long-lived mediators.

The paper is organised as follows, in section II we comment on the modified mediator density

profile, in section III, we set up the formalism for computing anisotropies for mediator decay into

e+, e�, in section IV we comment on the numerical results of our work. Finally, in section V, we

ponder upon possible astrophysical mechanisms which can alter the galactic density profiles thus,

assessing the impact of astrophysical environments on the anisotropies. We conclude in section VI.

II. SMEARED MEDIATOR PROFILE

An important quantity in our calculations is the number density of the mediators. While the

mediator density is proportional to square of the local DM density ⇢, it gets attenuated by the decay

length l. Due to this, the mediator exhibits a smeared profile, somewhere in between annihilating

and decaying DM scenarios. We estimate this e↵ect as follows. As stated in previous section,

we assume, DM particle � annihilates in pair of light, meta-stable mediators �, which have a

lifetime ⌧�. The mediator then decays to SM charged particles. If m� < 100MeV, it is assumed

to dominantly decay to electrons. For simplicity let us assume that DM annihilated at point A,

i.e. a distance ~r with respect to the Galactic Centre (GC), the produced mediators � then travel

a distance ~l w.r.t. point A and eventually decay into SM particles at point B.

The boost received by the mediator, as well as the time dilation of its lifetime, ⌧� = (E�/m�) ⌧
0

�

with ⌧0� the lifetime in mediator rest frame, should be constant because E� ' m�. That is, the

possibility for each mediator to decay at certain length l during propagation is

P (l) =
1

ld
exp(� l

ld
), (1)

• Mediator is highly boosted and decays to SM particles

• Ideal observatory, our Universe

Kulkarni et al
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Cosmic rays

PoS(cargese)009

Indirect and direct dark matter detection Pierre Salati

order Fermi mechanism is responsible for some mild diffusive reacceleration. Its coefcient KEE
depends on the particle velocity ; and total energy E and is related to the space diffusion coefcient
K(E) through

KEE =
2
9
V 2a

E2; 4

K(E)
. (2.4)

In the case of positrons, diffusive reacceleration is completely dominated by energy losses. Finally,
galactic convection wipes cosmic rays away from the disc with a velocity VC ∼ 5 to 15 km s−1.

Figure 17: Schematic edge–on view of theMilkyWay diffusive halo (DH) as seen by a cosmic ray physicist.
The stellar and gaseous disc is sandwiched between two thick layers which contain turbulent magnetic elds.
After having been accelerated by SN driven shock waves or produced by DM species annihilating in the
galactic halo, cosmic rays diffuse on magnetic inhomogeneities and are wiped away by a galactic wind with
velocityVC. They can lose energy and are also mildly subject to diffusive reacceleration. The former process
is by far the dominant one in the case of electrons and positrons. This diagram has been borrowed from the
review [49].

33

• From the point of production 
cosmic rays travel up to a certain 
distance ballistically  

• After the ‘ballistic’/‘last scattering’ 
sphere, they promptly loose 
energy due to diffusive effects 

• What are the effects if the cosmic 
rays produced due to DM 
annihilation enter this ballistic 
regime?

• Consider DM annihilation at the centre of our galaxy, the mediators travel a distance 
and decay within the positron ballistic sphere around the earth
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Smeared mediator density profile

3

in section VII.

II. MEDIATOR SMEARED DARK MATTER PROFILE

An important quantity in our calculations is the number density of mediators. While the

mediator density is proportional to the square of the local DM density ⇢, it gets attenuated by the

decay length l. Due to this, mediator exhibit a smeared profile, somewhere in between annihilating

and decaying DM scenarios. We estimate this e↵ect as follows. As stated in the previous section, we

assume DM particles � to annihilate in pairs of light and metastable species � dubbed mediators,

which have a lifetime ⌧�. The mediators then decay to SM charged particles. If m� < 100MeV, it

is assumed to dominantly decay to electron-positron pairs. For simplicity, let us assume that DM

annihilates at point A, i.e., at a position labelled by ~rA with respect to the Galactic Centre (GC).

It produces mediators � which travel a distance ~l = ~rB � ~rA with respect to the production site A

before decaying into SM species at point B.

The boost received by the mediator, as well as the time dilation of its lifetime ⌧� = (E�/m�) ⌧
0

� ,

where ⌧0� denotes the rest frame lifetime, should be constant because E� ' m�. Once produced,

a mediator propagates at a speed close to the celerity of light. The probability P (> l) that it

propagates along a distance l without decaying is just given by the factor exp(�l/ld), where the

decay length ld ' c ⌧� in the relativistic limit. Taking the derivative of P (> l) with respect to l

yields the probability distribution function for a mediator to decay during propagation at distance

l from the production site A

P (l) =
1

ld
exp(�l/ld). (1)

The DM density ⇢ being time-independent, we assume that steady-state holds. In order to

calculate the number of mediator-decay events at point B, we need to know the DM annihilation

rate at each location A from where mediators can originate to subsequently decay at B. The source

term of SM particles is given by the convolution of the DM annihilation rate with the mediator

propagator that gauges the probability for a mediator produced at location A to decay at location

B. This source term may be expressed as the integral

q
SM

(~rB) = a

Z
d3~l · ⇢2(~rA)

m2

�

h�annvi · P (l)

4⇡ l2
. (2)

The pre-factor a is given by number of SM particles per annihilation times 1/2 (1/4) for self-
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Mediator probability distribution

Source term for SM particles 

Convolution with standard density profile

• Effective dark matter density gets smeared 

• Enhancement in the effective DM density around the Earth 

• No strong signals associated with DM annihilations

7

Figure 1. The mediator-smeared DM profile ⇢e↵ is plotted as a function of galactocentric radius r for

various decay length ld. In the left panel, the actual DM distribution ⇢� is a pure NFW profile while in the

right panel a very dense core has been added in the inner 1 pc. The long dashed black curves correspond to

the unperturbed DM distribution ⇢�. The solid lines feature the e↵ect of mediator smearing with a decay

length ld respectively equal to 0.01 (red), 1 (green), 3 (blue) and 10 kpc (magenta).

that the central density ⇢e↵(r < r0) is significantly decreased with respect to the initial value ⇢�,

up to two orders of magnitude for ld = 10 kpc.

The second and foremost e↵ect of mediators is to redistribute DM outside the densest regions.

This e↵ect is conspicuous in the right panel where the DM e↵ective density drops as 1/r outside

the inner core and behaves as an enhanced NFW profile for galactocentric radii larger than 1 pc

and smaller than the decay length. The DM density in the solar neighbourhood, for instance, is

enhanced by a factor ⇠ 45 for ld = 10 kpc. If we assume that the e↵ective DM density results only

from the smearing of the central concentration lying inside the inner 1 pc, denoted as �⇢e↵ , a naive

estimate of the boost is given by

�⇢e↵(�)

⇢�(�)
' N

⇢
1 +

r�
rS

�
2
⇢

r0
3 ld

�
1/2

exp(�r�/2 ld) ⇠ 45 . (12)

We have checked that given the NFW profile of DM density, �⇢e↵(�) serves as a very good ap-

proximation of the e↵ective DM density ⇢e↵ at the Solar System. To summarize, the e↵ective DM

density is enhanced with respect to the actual one outside the dense regions where the opposite

e↵ect takes place. This is not surprising. According to definition (9), the integrals over the entire

space of both ⇢2� and ⇢2e↵ must be equal. Mediators cannot deplete some regions from their DM
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Smeared mediator density profile

3

in section VII.

II. MEDIATOR SMEARED DARK MATTER PROFILE

An important quantity in our calculations is the number density of mediators. While the

mediator density is proportional to the square of the local DM density ⇢, it gets attenuated by the

decay length l. Due to this, mediator exhibit a smeared profile, somewhere in between annihilating

and decaying DM scenarios. We estimate this e↵ect as follows. As stated in the previous section, we

assume DM particles � to annihilate in pairs of light and metastable species � dubbed mediators,

which have a lifetime ⌧�. The mediators then decay to SM charged particles. If m� < 100MeV, it

is assumed to dominantly decay to electron-positron pairs. For simplicity, let us assume that DM

annihilates at point A, i.e., at a position labelled by ~rA with respect to the Galactic Centre (GC).

It produces mediators � which travel a distance ~l = ~rB � ~rA with respect to the production site A

before decaying into SM species at point B.

The boost received by the mediator, as well as the time dilation of its lifetime ⌧� = (E�/m�) ⌧
0

� ,

where ⌧0� denotes the rest frame lifetime, should be constant because E� ' m�. Once produced,

a mediator propagates at a speed close to the celerity of light. The probability P (> l) that it

propagates along a distance l without decaying is just given by the factor exp(�l/ld), where the

decay length ld ' c ⌧� in the relativistic limit. Taking the derivative of P (> l) with respect to l

yields the probability distribution function for a mediator to decay during propagation at distance

l from the production site A

P (l) =
1

ld
exp(�l/ld). (1)

The DM density ⇢ being time-independent, we assume that steady-state holds. In order to

calculate the number of mediator-decay events at point B, we need to know the DM annihilation

rate at each location A from where mediators can originate to subsequently decay at B. The source

term of SM particles is given by the convolution of the DM annihilation rate with the mediator

propagator that gauges the probability for a mediator produced at location A to decay at location

B. This source term may be expressed as the integral

q
SM

(~rB) = a

Z
d3~l · ⇢2(~rA)

m2

�

h�annvi · P (l)

4⇡ l2
. (2)

The pre-factor a is given by number of SM particles per annihilation times 1/2 (1/4) for self-
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Figure 1. The mediator-smeared DM profile ⇢e↵ is plotted as a function of galactocentric radius r for

various decay length ld. In the left panel, the actual DM distribution ⇢� is a pure NFW profile while in the

right panel a very dense core has been added in the inner 1 pc. The long dashed black curves correspond to

the unperturbed DM distribution ⇢�. The solid lines feature the e↵ect of mediator smearing with a decay

length ld respectively equal to 0.01 (red), 1 (green), 3 (blue) and 10 kpc (magenta).

that the central density ⇢e↵(r < r0) is significantly decreased with respect to the initial value ⇢�,

up to two orders of magnitude for ld = 10 kpc.

The second and foremost e↵ect of mediators is to redistribute DM outside the densest regions.

This e↵ect is conspicuous in the right panel where the DM e↵ective density drops as 1/r outside

the inner core and behaves as an enhanced NFW profile for galactocentric radii larger than 1 pc

and smaller than the decay length. The DM density in the solar neighbourhood, for instance, is

enhanced by a factor ⇠ 45 for ld = 10 kpc. If we assume that the e↵ective DM density results only

from the smearing of the central concentration lying inside the inner 1 pc, denoted as �⇢e↵ , a naive

estimate of the boost is given by
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exp(�r�/2 ld) ⇠ 45 . (12)

We have checked that given the NFW profile of DM density, �⇢e↵(�) serves as a very good ap-

proximation of the e↵ective DM density ⇢e↵ at the Solar System. To summarize, the e↵ective DM

density is enhanced with respect to the actual one outside the dense regions where the opposite

e↵ect takes place. This is not surprising. According to definition (9), the integrals over the entire

space of both ⇢2� and ⇢2e↵ must be equal. Mediators cannot deplete some regions from their DM
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Two body decay of mediator
26

Figure 5. Left panel: Computed fluxes of cosmic positrons as a function of observed positron energy.

Black curves show the di↵use component while colored lines feature the prompt flux. Right panel: Positron

anisotropy �(~w,Ee) as a function of observing angle �. Both panels are for 1TeV WIMP with the NFW

profile as given above, and solid (dashed) curves correspond to a decay length ld of 10 kpc (2 kpc). Here the

mediator � decays to a pair of electrons, with a “box-shaped” energy spectrum.

The behaviour of positron anisotropy can be understood as

�(~w,Ee) /
E 2+�

e

sin�
�
m� � Ee

� ⇥
1

ld
e�r�/ld . (58)

To verify these analytical expressions, we calculate numerically the anisotropies for the NFW

DM profile, whose parameters have been introduced earlier, and show the computed results in

Fig. 5. This is done for 1TeV DM, where we take two benchmark decay lengths: 10 kpc and 2 kpc,

illustrated by solid and dashed curves, respectively, while varying the observed positron energy

(left panel) and the observing angle (right panel).

In Fig. 5, the left panel gives the di↵use (prompt) flux of cosmic positrons as black (colored)

curves, respectively, as functions of the observed positron energy. The di↵use flux simply decreases

with Ee as described in equation (57), with little dependence on ld. The situation is di↵erent

for the prompt flux, where increasing Ee raises the di↵usion length rmax, and thus the value of

�e(~w,Ee). It in turn enhances the dipole anisotropy signal, �. This e↵ect is shown in the right

panel, where the anisotropy values of the upper set of two curves, corresponding to Ee = 500GeV,

is about a factor of 500 larger than those of the lower two with Ee = 50GeV, in agreement with

the approximation given by equation (58). It is worth mentioning that the increase of positron

Prompt

Diffused

• Diffused component does not depend on the decay length 

• Prompt flux depends on decay length and increases with observed energy, 
because increasing observed energy increases the diffusion length
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Conclusions

• Identification and realistic evaluation of exotic dark matter interactions at 
experiments is a crucial task for next generation dark matter experiments 


• Plenty of parameter space is still unexplored and next gen program will shed 
some light on this 


• Exotic interactions in dark matter and neutrino sector can be simultaneously 
probed and should be considered for the ultimate direct detection experiments 


• It is possible to constrain both dark matter and mediator mass at direct detection 
experiments if the mediator is reasonably light


• If the mediator is ultra-long lived, then indirect detection experiments can be 
hopeful 


• Asymmetry in cosmic rays can be generated, for light mediator lifetimes of 
O(years)
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Backup
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https://drive.google.com/file/d/0B_Ry7cVRv14xV053Z3FSVjFnd0k/view
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Light dark matter - detectors

• CRESST III 


• Exposure: 1000 kg days


• Energy threshold: 100 eV


• Background level: 3.5 x 10-2 keV-1 kg-1 day-1 = 3.5 events each bin


• Flat efficiency and Gaussian energy resolution of 20 eV


• SuperCDMS


• 1.6 x 104 kg days


• Energy threshold 100 eV (conservative)


• Background level: 10 keV-1 kg-1 year-1


• Flat signal efficiency, energy resolution of 10 eV
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• Can lead to thousands of DM events in the future

https://drive.google.com/file/d/0B_Ry7cVRv14xV053Z3FSVjFnd0k/view
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Technical details
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• Likelihood function

• Construct likelihood ratio (R), log likelihood follows a chi-square


• Exclude parameters, for two free parameter model if:

Figure 2. Constraints (at 90% CL) on the e↵ective coupling g for DM interacting via a light mediator.
These bounds assume that the mediator couples only to protons (✓ = 0).

with kinetic mixing. In terms of the kinetic mixing parameter ✏ and the mediator-DM
coupling gDM the e↵ective coupling g is then simply given by g = e ✏ gDM, where e =

p
4⇡↵

is the electromagnetic coupling. Di↵erent values of ✓ would typically enhance the sensitivity
of heavy targets like tungsten relative to light targets like oxygen, except for specific values
of ✓ that lead to destructive interference between proton and neutron contributions (see
section 3.2).

3 Reconstructing particle physics parameters

From figure 2 we make two central observations: first, if DM-nucleon scattering is due to
the exchange of light mediators, cryogenic experiments will have the best sensitivity to such
interactions up to DM masses of around 10 GeV. And second, compared to current bounds
this sensitivity will improve by up to two orders of magnitude in terms of the e↵ective coupling
g, corresponding to up to four orders of magnitude in terms of the scattering rate. These
observations immediately raise the question what we can hope to learn from a DM signal in
low-threshold direct detection experiments. In this section we will answer this question by
generating mock data and using this data to perform a parameter reconstruction.

To determine the compatibility of a specific particle physics hypothesis (characterized
by a set of parameters x) with a given set of data, we construct a likelihood function L(x)
as follows. For each individual experiment ↵, we calculate the Poisson likelihood

� 2 logL↵(x,y) = 2
X

i


R↵

i (x,y) + B↵
i (y) �N↵

i + N↵
i log

N↵
i

R↵
i (x,y) + B↵

i (y)

�
, (3.1)

– 5 –
Predicted signal 
events Predicted 

background  
events

Observed events

Particle physics 
parameters

Nuisance  
parameters

where the sum is over all bins, and R↵
i , B↵

i , and N↵
i denote the number of predicted signal

events, predicted background events and observed events, respectively. In addition to the
particle physics parameters x we have introduced a number of nuisance parameters y, which
represent for example astrophysical or experimental uncertainties and may a↵ect both signal
and background predictions. These nuisance parameters may be constrained by an additional
likelihood function Ln. The total profile likelihood is then given by the product of the
individual likelihoods maximised with respect to the nuisance parameters:

L(x) = max
y

Ln(y)
Y

↵

L↵(x,y) . (3.2)

For the purpose of parameter estimation, the next step is to determine the value of the
particle physics parameters x that maximise the profile likelihood, called x0. We can then
construct the likelihood ratio R(x) = L(x)/L(x0), which by definition is smaller than unity.
Under random fluctuations in the data, the quantity �2 logR(x) is expected to follow a �2

distribution with number of degrees of freedom n equal to the number of parameters x. We
can therefore exclude a hypothetical set of parameters x at confidence level 1 � p if

1 � CDF�2(n,�2 logR(x)) < p , (3.3)

where CDF�2(n, x) denotes the cumulative distribution function for the �2 distribution with
n degrees of freedom. For the case of two parameters, the 95% confidence level (CL) bound
is therefore given by �2 logR < 5.99.

In the following we will focus on mDM . 5 GeV, where cryogenic detectors have better
sensitivity than liquid xenon experiments (see figure 2). We will first focus on one specific
benchmark case, namely mDM = 2GeV, mmed = 3MeV and ✓ = 0, and then discuss alter-
native benchmarks in section 3.4. The assumed value of g is chosen to be compatible with
existing direct detection constraints. Choosing g close to current exclusion limits will lead to
an optimistic scenario, in which thousands of events can be observed in future experiments,
whereas smaller values of g imply smaller statistics and less precise parameter reconstruction.
In the following, we will consider two alternative choices, namely g = 2 · 10�11 (referred to
as the low-statistics case) and g = 6 · 10�11 (the high-statistics case). For our benchmark
scenario, these choices correspond to around 900 and 8000 events across the set of future
experiments that we consider (with SuperCDMS SNOLAB predicted to observe about four
times as many events as CRESST-III).

We can now generate mock data for our benchmark scenario and the two possible cou-
pling choices and then determine which alternative choices of mDM and mmed are compatible
with this data. For the purpose of parameter reconstruction it is su�cient to consider mock
data sets without Poisson fluctuations. Although in this case the best-fit point will have a
very high likelihood, L ⇡ 1, we nevertheless obtain reasonable estimates of the likelihood
ratio R(x) expected in a typical realization of the experiments. We will return to the issue
of Poisson fluctuations in the context of goodness-of-fit estimates in section 3.5.

Figure 3 shows the regions of parameter space compatible with the mock data generated
for our benchmark scenario. For the purpose of these plots we are not interested in recon-
structing the e↵ective coupling g, i.e. we will simply treat it as a nuisance parameter and fix
it to the value that maximises the likelihood. Nevertheless, the assumed value of g does play
an important role as it determines the number of events that we expect to observe. The left
(right) panel corresponds to the low-statistics (high-statistics) case. Red and blue contours
correspond to the parameter reconstruction based only on data from SuperCDMS SNOLAB

– 6 –

• Generate mock data and attempt reconstruction

https://drive.google.com/file/d/0B_Ry7cVRv14xV053Z3FSVjFnd0k/view
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Let’s be optimistic

• Several target elements contribute to CRESST parameter reconstruction


• For low masses oxygen contributes for high masses tungsten


• Very accurate reconstruction once SuperCDMS data is included


• Four times more number of events at SuperCDMS
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Figure 3. Allowed parameter regions (at 95% CL) reconstructed from a mock data set generated for
mDM = 2 GeV, mmed = 3 MeV and ✓ = 0 for the low-statistics scenario (left) and high-statistics sce-
nario (right panel). For the purpose of reconstruction, we assume that ✓, the DM velocity distribution
and the background normalization is known.

and CRESST-III respectively, while the grey region indicates the combined constraints. Note
that in these plots we do not yet take into account nuisance parameters related to background
or astrophysical uncertainties; these will be discussed later in this section.

A striking feature in the left panel of figure 3 is the accuracy of the parameter recon-
struction from SuperCDMS SNOLAB as compared to CRESST-III. This happens because
of two reasons: first, SuperCDMS SNOLAB is predicted to observe about four times more
events than CRESST-III and hence has much better statistics. Second, several target el-
ements contribute to the observed event rates in CRESST-III, leading to di↵erent ways in
which a good fit to the observed data can be obtained. While for the benchmark case that we
consider the event rate is dominated by scattering o↵ oxygen (because tungsten recoils are
below threshold), very similar recoil spectra are obtained for heavier masses and scattering
o↵ tungsten. This observation also explains the two di↵erent ‘branches’ found for heavy me-
diator masses. With su�cient statistics it becomes possible to distinguish between the two
possible scenarios and reject the solution with dominant scattering o↵ tungsten (see right
panel on figure 3).

Another interesting feature is that all reconstructed parameter regions exhibit a charac-
teristic ‘tilt’ in the sense that lighter mediators are necessary for fitting heavier DM masses
and vice versa. The origin of this shape is that heavier DM masses predict flatter recoil
spectra, while lighter mediators predict steeper recoil spectra. Increasing the DM mass while
decreasing the mediator mass and the e↵ective coupling g may therefore leave the recoil
spectra approximately unchanged. This degeneracy disappears once the mediator becomes
so light (or so heavy) that direct detection experiments are e↵ectively in the massless media-
tor limit (or the contact interaction limit). The recoil spectra then no longer depend on the
precise value of the mediator mass.

Finally we make the crucial observation that combining data from SuperCDMS SNO-
LAB and CRESST-III allows for a much more precise reconstruction of the mediator mass

– 7 –

Low statistics (~900 events) High statistics (8000 events total)
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Let’s be optimistic

• Several target elements contribute to CRESST parameter reconstruction


• For low masses oxygen contributes for high masses tungsten


• Very accurate reconstruction once SuperCDMS data is included


• Four times more number of events at SuperCDMS
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Figure 3. Allowed parameter regions (at 95% CL) reconstructed from a mock data set generated for
mDM = 2 GeV, mmed = 3 MeV and ✓ = 0 for the low-statistics scenario (left) and high-statistics sce-
nario (right panel). For the purpose of reconstruction, we assume that ✓, the DM velocity distribution
and the background normalization is known.

and CRESST-III respectively, while the grey region indicates the combined constraints. Note
that in these plots we do not yet take into account nuisance parameters related to background
or astrophysical uncertainties; these will be discussed later in this section.

A striking feature in the left panel of figure 3 is the accuracy of the parameter recon-
struction from SuperCDMS SNOLAB as compared to CRESST-III. This happens because
of two reasons: first, SuperCDMS SNOLAB is predicted to observe about four times more
events than CRESST-III and hence has much better statistics. Second, several target el-
ements contribute to the observed event rates in CRESST-III, leading to di↵erent ways in
which a good fit to the observed data can be obtained. While for the benchmark case that we
consider the event rate is dominated by scattering o↵ oxygen (because tungsten recoils are
below threshold), very similar recoil spectra are obtained for heavier masses and scattering
o↵ tungsten. This observation also explains the two di↵erent ‘branches’ found for heavy me-
diator masses. With su�cient statistics it becomes possible to distinguish between the two
possible scenarios and reject the solution with dominant scattering o↵ tungsten (see right
panel on figure 3).

Another interesting feature is that all reconstructed parameter regions exhibit a charac-
teristic ‘tilt’ in the sense that lighter mediators are necessary for fitting heavier DM masses
and vice versa. The origin of this shape is that heavier DM masses predict flatter recoil
spectra, while lighter mediators predict steeper recoil spectra. Increasing the DM mass while
decreasing the mediator mass and the e↵ective coupling g may therefore leave the recoil
spectra approximately unchanged. This degeneracy disappears once the mediator becomes
so light (or so heavy) that direct detection experiments are e↵ectively in the massless media-
tor limit (or the contact interaction limit). The recoil spectra then no longer depend on the
precise value of the mediator mass.

Finally we make the crucial observation that combining data from SuperCDMS SNO-
LAB and CRESST-III allows for a much more precise reconstruction of the mediator mass

– 7 –

Low statistics (~900 events) High statistics (8000 events total)
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Let’s be optimistic

• Several target elements contribute to CRESST parameter reconstruction


• For low masses oxygen contributes for high masses tungsten


• Very accurate reconstruction once SuperCDMS data is included


• Four times more number of events at SuperCDMS
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Figure 3. Allowed parameter regions (at 95% CL) reconstructed from a mock data set generated for
mDM = 2 GeV, mmed = 3 MeV and ✓ = 0 for the low-statistics scenario (left) and high-statistics sce-
nario (right panel). For the purpose of reconstruction, we assume that ✓, the DM velocity distribution
and the background normalization is known.

and CRESST-III respectively, while the grey region indicates the combined constraints. Note
that in these plots we do not yet take into account nuisance parameters related to background
or astrophysical uncertainties; these will be discussed later in this section.

A striking feature in the left panel of figure 3 is the accuracy of the parameter recon-
struction from SuperCDMS SNOLAB as compared to CRESST-III. This happens because
of two reasons: first, SuperCDMS SNOLAB is predicted to observe about four times more
events than CRESST-III and hence has much better statistics. Second, several target el-
ements contribute to the observed event rates in CRESST-III, leading to di↵erent ways in
which a good fit to the observed data can be obtained. While for the benchmark case that we
consider the event rate is dominated by scattering o↵ oxygen (because tungsten recoils are
below threshold), very similar recoil spectra are obtained for heavier masses and scattering
o↵ tungsten. This observation also explains the two di↵erent ‘branches’ found for heavy me-
diator masses. With su�cient statistics it becomes possible to distinguish between the two
possible scenarios and reject the solution with dominant scattering o↵ tungsten (see right
panel on figure 3).

Another interesting feature is that all reconstructed parameter regions exhibit a charac-
teristic ‘tilt’ in the sense that lighter mediators are necessary for fitting heavier DM masses
and vice versa. The origin of this shape is that heavier DM masses predict flatter recoil
spectra, while lighter mediators predict steeper recoil spectra. Increasing the DM mass while
decreasing the mediator mass and the e↵ective coupling g may therefore leave the recoil
spectra approximately unchanged. This degeneracy disappears once the mediator becomes
so light (or so heavy) that direct detection experiments are e↵ectively in the massless media-
tor limit (or the contact interaction limit). The recoil spectra then no longer depend on the
precise value of the mediator mass.

Finally we make the crucial observation that combining data from SuperCDMS SNO-
LAB and CRESST-III allows for a much more precise reconstruction of the mediator mass
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• Several target elements contribute to CRESST parameter reconstruction


• For low masses oxygen contributes for high masses tungsten


• Very accurate reconstruction once SuperCDMS data is included


• Four times more number of events at SuperCDMS
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Figure 3. Allowed parameter regions (at 95% CL) reconstructed from a mock data set generated for
mDM = 2 GeV, mmed = 3 MeV and ✓ = 0 for the low-statistics scenario (left) and high-statistics sce-
nario (right panel). For the purpose of reconstruction, we assume that ✓, the DM velocity distribution
and the background normalization is known.

and CRESST-III respectively, while the grey region indicates the combined constraints. Note
that in these plots we do not yet take into account nuisance parameters related to background
or astrophysical uncertainties; these will be discussed later in this section.

A striking feature in the left panel of figure 3 is the accuracy of the parameter recon-
struction from SuperCDMS SNOLAB as compared to CRESST-III. This happens because
of two reasons: first, SuperCDMS SNOLAB is predicted to observe about four times more
events than CRESST-III and hence has much better statistics. Second, several target el-
ements contribute to the observed event rates in CRESST-III, leading to di↵erent ways in
which a good fit to the observed data can be obtained. While for the benchmark case that we
consider the event rate is dominated by scattering o↵ oxygen (because tungsten recoils are
below threshold), very similar recoil spectra are obtained for heavier masses and scattering
o↵ tungsten. This observation also explains the two di↵erent ‘branches’ found for heavy me-
diator masses. With su�cient statistics it becomes possible to distinguish between the two
possible scenarios and reject the solution with dominant scattering o↵ tungsten (see right
panel on figure 3).

Another interesting feature is that all reconstructed parameter regions exhibit a charac-
teristic ‘tilt’ in the sense that lighter mediators are necessary for fitting heavier DM masses
and vice versa. The origin of this shape is that heavier DM masses predict flatter recoil
spectra, while lighter mediators predict steeper recoil spectra. Increasing the DM mass while
decreasing the mediator mass and the e↵ective coupling g may therefore leave the recoil
spectra approximately unchanged. This degeneracy disappears once the mediator becomes
so light (or so heavy) that direct detection experiments are e↵ectively in the massless media-
tor limit (or the contact interaction limit). The recoil spectra then no longer depend on the
precise value of the mediator mass.

Finally we make the crucial observation that combining data from SuperCDMS SNO-
LAB and CRESST-III allows for a much more precise reconstruction of the mediator mass
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Let’s be optimistic

• Several target elements contribute to CRESST parameter reconstruction


• For low masses oxygen contributes for high masses tungsten


• Very accurate reconstruction once SuperCDMS data is included


• Four times more number of events at SuperCDMS
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Figure 3. Allowed parameter regions (at 95% CL) reconstructed from a mock data set generated for
mDM = 2 GeV, mmed = 3 MeV and ✓ = 0 for the low-statistics scenario (left) and high-statistics sce-
nario (right panel). For the purpose of reconstruction, we assume that ✓, the DM velocity distribution
and the background normalization is known.

and CRESST-III respectively, while the grey region indicates the combined constraints. Note
that in these plots we do not yet take into account nuisance parameters related to background
or astrophysical uncertainties; these will be discussed later in this section.

A striking feature in the left panel of figure 3 is the accuracy of the parameter recon-
struction from SuperCDMS SNOLAB as compared to CRESST-III. This happens because
of two reasons: first, SuperCDMS SNOLAB is predicted to observe about four times more
events than CRESST-III and hence has much better statistics. Second, several target el-
ements contribute to the observed event rates in CRESST-III, leading to di↵erent ways in
which a good fit to the observed data can be obtained. While for the benchmark case that we
consider the event rate is dominated by scattering o↵ oxygen (because tungsten recoils are
below threshold), very similar recoil spectra are obtained for heavier masses and scattering
o↵ tungsten. This observation also explains the two di↵erent ‘branches’ found for heavy me-
diator masses. With su�cient statistics it becomes possible to distinguish between the two
possible scenarios and reject the solution with dominant scattering o↵ tungsten (see right
panel on figure 3).

Another interesting feature is that all reconstructed parameter regions exhibit a charac-
teristic ‘tilt’ in the sense that lighter mediators are necessary for fitting heavier DM masses
and vice versa. The origin of this shape is that heavier DM masses predict flatter recoil
spectra, while lighter mediators predict steeper recoil spectra. Increasing the DM mass while
decreasing the mediator mass and the e↵ective coupling g may therefore leave the recoil
spectra approximately unchanged. This degeneracy disappears once the mediator becomes
so light (or so heavy) that direct detection experiments are e↵ectively in the massless media-
tor limit (or the contact interaction limit). The recoil spectra then no longer depend on the
precise value of the mediator mass.

Finally we make the crucial observation that combining data from SuperCDMS SNO-
LAB and CRESST-III allows for a much more precise reconstruction of the mediator mass
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S. Kulkarni

Let’s be realistic

• Characteristic tilt: light mediators needed for heavier masses and vice versa


• Nuisance parameter for background normalisation: shape known, normalisation 
unknown


• Degeneracy between DM mass, coupling and mediator mass removed by 
combination of data - accurate reconstruction 
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Figure 4. Same as figure 3 but including additional nuisance parameters y↵ to account for un-
certainties in the background normalization (dotted curves). Dashed curves correspond to the fixed
background normalization shown in figure 3.

than considering the individual experiments. The primary reason behind this is that the
degeneracy between DM mass, mediator mass and e↵ective coupling strength g discussed
above depends on the target element and therefore on the experiments (see eq. (2.1)). This
degeneracy is therefore e↵ectively removed when combining data from several experiments.
Nevertheless, it is of course conceivable that the degeneracy will reappear (or new degenera-
cies will arise) once we include various sources of uncertainties. We will therefore now discuss
such uncertainties in detail and assess their impact on our results.

3.1 Background uncertainties

In the parameter reconstruction performed above we have assumed exact knowledge of the
shape and normalization of the experimental background(s). This is an overly optimistic
assumption and we will now discuss a more conservative approach. Of course, if we were
to allow arbitrary background shapes and normalizations, any kind of DM signal could be
absorbed into the background, making it impossible to claim anything but exclusion limits.
Any parameter reconstruction therefore necessarily requires some knowledge on the distribu-
tion of backgrounds. Here we assume that the shape of the background in each experiment is
known, but we keep the normalization completely free. In other words, we introduce a nui-
sance parameter y↵ for each experiment ↵ such that the background predictions in eq. (3.1)
are given by B↵

i (y) = y↵B↵
i . We do not impose any constraints on the parameters y↵ apart

from the trivial requirement that they must be strictly positive. As explained in more detail
in appendix A, we assume the backgrounds to be flat in energy both for CRESST-III and Su-
perCDMS SNOLAB. However, this assumption can easily be modified within our framework
once more detailed informations about the future experiments are available.

We show the impact of including background uncertainties in figure 4. As expected,
these additional nuisance parameters visibly increase the size of the allowed parameter re-
gions, in particular for SuperCDMS SNOLAB, where only a relatively small range of recoil
energies is used to constrain the DM properties. For CRESST-III we observe that the second
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Let’s be realistic

• Nuisance parameter for unknown ratio of proton to neutron coupling


• Ability of CRESST to reconstruct parameters significantly reduced when coupling 
let vary
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Figure 6. Same as figure 4 but including the unknown coupling ratio ✓ as an additional nuisance
parameter (dash-dotted curves). The dotted curves correspond to ✓ = 0, as already shown in figure 4.

velocity distribution f(v). The local DM density ⇢0 enters linearly into the di↵erential
event rate, so varying this quantity is equivalent to varying the e↵ective coupling g. Since
we are not interested in determining g and simply treat it as a nuisance parameter, our
approach therefore already accounts also for uncertainties in the local DM density. The
velocity distribution, on the other hand, enters in a more complicated way, giving rise to
additional uncertainties that we will now discuss.

The di↵erential event rate depends on the velocity distribution via the velocity integral

⌘(vmin), which in turn depends on the DM mass and the recoil energy via vmin =
q

mT ER
2µ2

T
.

Changes in the velocity distribution may therefore change the shape of the recoil spectrum
and thereby limit our ability to extract information on the particle physics parameters.
One possible way to deal with astrophysical uncertainties are so-called halo-independent
methods [64–66], which aim to combine information from di↵erent experiments in such a
way that the dependence on ⌘(vmin) drops out. This approach has been successfully applied
to many di↵erent models and in particular to models with light mediators [67].

However, as pointed out in ref. [68], there is a fundamental limitation of this approach in
the case of low-mass DM. If mDM ⌧ mT for all target elements under consideration, we find

that vmin '
q

mT ER
2m2

DM
= q

2mDM
. The velocity integral hence depends on the same combination

of mT and ER that also enters in the factor for light mediator exchange, eq. (2.1). In other
words, for low-mass DM, any change in the mediator mass can be compensated for by an
appropriate change in the velocity integral for all target elements simultaneously. As a result,
it will not be possible to infer any information on the mediator mass if we allow for completely
arbitrary velocity distributions.

We will therefore take a di↵erent approach and consider only velocity distributions of
the Maxwell-Boltzmann form. This assumption is supported by recent studies involving
numerical simulations of Milky Way like galaxies [69, 70]. We can then study the impact of
astrophysical parameters by varying the underlying parameters v0, vesc and vobs. In this case
we can actually use the fact that mDM ⌧ mT to our advantage. As shown in appendix B, if we
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Alternative benchmarks

• Works for limited 
ranges


• In each case it is 
possible to rule out 
contact interaction or 
light mediators
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Figure 9. Same as figure 8 but varying the true value of mmed. True value of mmed = 0.1 MeV
(top left), 1 MeV (top right) 10 MeV (bottom left) and 100 MeV (bottom right) panel, keeping
mDM = 2 GeV fixed. For each case, the true value of coupling g is chosen such that the number of
events corresponds to the high-statistics case discussed previously.

an upper bound on the mediator mass of about mmed < 0.8 MeV. As expected, the mock
data is compatible with arbitrarily light mediators so that no lower bound can be placed.
Conversely, if the assumed mediator mass is larger than about 10 MeV, it is no longer possible
to distinguish our scenario from the case of contact interactions and the allowed parameter
region extends up to arbitrarily high mediator masses (see bottom row of figure 9). An
accurate reconstruction of the mediator mass is possible only if the mass falls between these
two extremes, as illustrated in the top-right panel for mmed = 1MeV.

To conclude this section we note that we have also studied the e↵ect of making di↵erent
assumptions on the value of ✓ used to generate mock data. If the e↵ective coupling g is
adjusted in such a way that the event numbers are comparable to the ones discussed above,
we find very similar results for di↵erent choices of ✓. An example with ✓ 6= 0 will be discussed
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Alternative benchmarks

• Qualitatively similar results


• Decreasing mass -> loss in sensitivity 


• Less statistics, worse reconstruction


• Oxygen, Tungsten degeneracy
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Figure 8. Allowed parameter regions for two di↵erent DM masses. The mock datasets were generated
assuming a DM mass of 1 (left) and 3 (right panel) GeV with a fixed mediator mass of mmed = 3MeV.
We assume g = 6 · 10�11, which corresponds to di↵erent number of events in the left and right panel.

(the DM mass and the mediator mass), we have introduced two particle physics nuisance
parameters (the coupling strength g and the coupling ratio parameter ✓), one astrophysics
nuisance parameter (the rescaling factor z) and one experimental nuisance parameter for
each experiment (the background normalizations y↵).3 In this section we present our results
for a number of di↵erent hypotheses on the particle physics properties of DM and discuss the
physics interpretation.

In figure 8 we perform a parameter reconstruction of the DM and mediator masses for
two di↵erent assumptions on the true DM mass, namely 1 GeV (left panel) and 3 GeV (right
panel). In both cases we fix the mediator mass to mmed = 3MeV and the e↵ective coupling
to g = 6 · 10�11.4 For mDM = 1 GeV all observed events are very close to the low-energy
threshold (i.e. within the first two or three bins). As a result the parameter reconstruction
becomes more di�cult and neither of the two experiments can individually constrain the
mass of the mediator. For CRESST-III one furthermore finds a second branch of solutions
corresponding to scattering o↵ tungsten. Combining the information from both experiments
leads to a somewhat better reconstruction, but the allowed parameter region still extends
to arbitrarily heavy mediators. For heavier DM masses, on the other hand, an accurate
parameter reconstruction is possible (see the right panel of figure 8).

In figure 9 we investigate the e↵ect of varying the assumed mediator mass while keeping
the DM mass fixed to 2 GeV. For each mediator mass we choose the value of the coupling g
such that the predicted number of events is comparable to the high-statistics case discussed
previously. In the top-left panel, the mediator mass is set to 0.1 MeV, i.e. e↵ectively massless
for the experiments under consideration. The combined fit to both experiments then places

3Even in the presence of these nuisance parameters it only takes a few seconds on a single CPU to calculate
the profile likelihood for a single grid point and around an hour to perform the parameter reconstruction on
a grid with 104 points. A significant amount of computing time can be saved by reusing the information from
neighbouring grid points to profile out the nuisance parameter related to astrophysical uncertainties.

4It should be noted that this procedure leads to somewhat di↵erent numbers of events in the left and right
panel. In particular the event rate in SuperCDMS is significantly suppressed for mDM = 1 GeV.

– 13 –

mmed = 3 MeV

g = 6 x 10-11

mDM = 1 GeV mDM = 3 GeV



S. Kulkarni

Self-interacting DM

• Within specific model (not a general conclusion)


• Fermionic DM, scalar mediator 


• Relic via dark sector freeze out and mediator decay via Higgs mixing
29
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DM with long lived mediator

• τφ lifetime > a few 105 seconds in order for 
φ produced around the GC to travel close to 
the Earth

• The constraints from BBN and CMB depend 
on ρφ X BR(φ → γ γ ) or ρφ X BR(φ → e± e± ) 

• For ρφ ∼ 10−2 − 10−5 X ρDM, τφ ≲ 106 − 108 
seconds by BBN constraints

• If ρφ ~ 10−5 - 10−11 X ρDM, the existence of 
φ is constrained not by BBN but by CMB, 
requiring τφ ≲ 1012 seconds 

• For ρφ ~ 10−11 · ρDM  there are no constraints 
even from the CMB observation 

Kim et. al. arXiv:1702.02944
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Figure 5. Cosmological constraints on the effective energy density parameter ⌅ of exotic particles
with e.m. decay channels. The effective energy density ⌅ is normalised to the CDM energy density,
and incorporates an efficiency factor (thus ⌅ = 1 means that the particle makes up 100% of CDM, and
that 100% of the decay energy goes into stable photons and e

±). We report bounds coming from Big
Bang Nucleosynthesis (shaded red area), CMB spectral distortions (full lines) and CMB anisotropies
measured by Planck (shaded blue area for e

± and shaded green area for �; the width of the band is
obtained by scanning over the kinetic energy of the injected particles in the range [10 keV; 1 TeV]).
In the case of CMB anisotropies, we compare the use of the full treatment for the energy deposition
with the on-the-spot approximation (dashed lines).

3.2.3 Results

We summarise the constraints on massive particles decaying into photons and e
± with kinetic

energies in [10 MeV; 1 TeV] in Fig. 5. In fact, due to the behaviour of injection efficiency
with energy, see [24], the range of CMB constraints thus obtained also covers the case of
smaller injected energies, down to about 10 keV. Hence, we can safely assume that the band
displayed gives a very good estimate of constraints for energies in the range [10 keV; 1 TeV].
For each lifetime, we report lower bounds on the effective energy density parameter ⌅, defined
in section 2.1. Given this definition, if the decaying particle accounts for 100% of cold dark
matter, ⌅ is expected to be equal to one or at least of order one, unless no sizable amount of
e
± and photons are produced by the decay (e.g. the particle may decay entirely into neutrinos

or dark radiation, a case considered separately in Ref. [9]). If at least a small fraction of the
injected energy goes into photons, electrons and positrons, a bound ⌅ ⌧ 1 implies that the
particle contributes to the total dark matter density by a negligible amount.

For each assumed lifetime, injected energy and decay channel (� or e
±), our Mon-

tePython run gives a CMB upper bound on ⌅ that we report on the figure. We obtain
two bands, one for each decay channel, with a width corresponding to extreme assumptions
on the injected energy. We also repeat the analysis with the on-the-spot approximation and
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