

Harvester for HPC

Tadashi Maeno (BNL)
on behalf of Harvester team

ATLAS TIM,
18-22 September 2017, CERN, Switzerland

2

➢ Preemptable or very short walltime limit
– To shorten the execution time of jobs

• Decreasing the number of events per job, and/or
• Increasing the number of CPU cores per job

– Or to enable event-level bookkeeping (event service)
➢ Limitation on number of concurrent workers in the batch

system (e.g. ~10)
– To increase the number of CPU cores per worker

• Combining multiple jobs to a single payload which is given to
a worker (multi-job or ManyToOne)

• Increasing the number of events per job (jumbo job)
➢ No outbound network connectivities on compute nodes

– Edge service on edge node to mediate communication between
Panda and workers

➢ Long waiting time in the batch queue
– To assign only low priority jobs
– Or to enable parallel event consumption on pledged resources

(multiple consumers or jumbo job)

Constraints for Workload Management 1/2

3

➢ Intermittent and/or spiky resource availability
– To send “fake” pilot requests from edge service (get_job

requests for job pre-fetching or update_job requests for
jobs in stating state)

– Or to request jobs before resources become available
(proactive workload assignment)

➢ Regular downtime
– To introduce a new queue status to temporarily prolong

various timeout values

Constraints for Workload Management 2/2

4

➢ Good to use the resource anyway
– Optimization of the number of events per job for the

resource and workflow
• E.g. very small number of events per job to minimize

losses due to preemption
– Dedicated workqueue

• Tasks can generate jobs without competing with other
tasks based on task priorities

• A pool of activated job due to nQueueLimit even if the
resource is temporarily inactive

– Preassigned to the resource
• Bypassing the brokerage which skips inactive resources
• No competition with other resources

➢ Not good for automation
– Production managers have to look for good tasks for HPCs,

empirically set event set sizes, and define downstream
processing steps accordingly

Custom Tasks

5

➢ To have full automation without custom tasks in
order to release production managers and operation
people from babysitting
– No special tuning for job sizing
– Without dedicated workqueue
– With the standard brokerage
– No slowness in task completion time due to usage

of HPCs
➢ A common pilot/worker provisioning machinery

– Each HPC can use different plugins and workflows
– Commonize monitoring views and operational

knowledge
➢ More optimal usage of compute resources

Goal

6

➢ Prefetches jobs, submits workers(pilots)+jobs to the
batch system, and lets workers communicate with panda
once they get CPUs

➢ Advantages
– Easy to send get_job requests without empty workers to

attract jobs before the resource becomes available
– A pool of prefetched jobs as a buffer for fluctuated CPU

availability
– Automatic throttling of worker submission in case of no

jobs
– A well matured workflow in ATLAS as it has been used for

some grid sites for a long time
➢ Caveats

– Requires less restrictive operation policy
• Outbound network connection on compute nodes, many

batch workers running in parallel, long walltime limit
with allocation

– High prio jobs cannot get the first available CPUs

Workflows 1/4 : Push+True Pilot

7

➢ Prefetches multiple jobs, combines them into a single
payload, and submits the payload to the batch system

➢ No MPI : one job per rank/node
➢ Essentially the same as “multi-job pilot”

– One major difference is that jobs are prefetched and input
files are asynchronously pre-staged before CPU slots
become available, while multi-job pilot fetches jobs and
stages input files once free CPU slots are found

➢ Advantage
– The number of concurrent workers in the batch system can

be reduced
➢ Caveats

– Needs jobs with similar execution time so that all jobs in
the same worker finish simultaneously to avoid having idle
nodes

• E.g., jobs from the same task or request. Cannot accept
jobs from random tasks → Custom tasks

– Or needs to enable event service
• When the first job finishes all the rest could be killed

Workflows 2/4 : ManyToOne

8

➢ One single huge event set (jumbo job) including all events from
one task

– A huge event set + event-level bookkeeping allows a big batch
worker to process events at HPCs as much as possible

– Multiple jumbo jobs per task to be assigned to different HPCs
– Don’t have to estimate optimal event sizes for each HPC

➢ The huge event set is partitioned at the same time to small
event sets (co-jumbo jobs)

– They are good to be processed by small batch workers at pledged
resources

➢ Workers for jumbo and co-jumbo jobs compete to grab events
– Each event is exclusively processed by one worker
– Events are being consumed at pledged resources even if big

workers are waiting in long HPC batch queues

Task

Jumbo job

Worker on HPC

Co-jumbo jobs

Events

EventsEventsEventsEvents

Events EventsEventsWorkers on
pledged resources

Workflows 3/4 : Jumbo Jobs

9

Workflows 4/4 : Multi Workers
➢ Many workers contributing to the same job
➢ Typical use-case : Jumbo jobs + small workers

– Single node workers
– Small MPI workers with backfill mode

➢ Job and file records for each jumbo job is huge in the database
– Not good to have one jumbo job for each small worker

➢ One standard job is processed by many CPU cores → One MPI job
is processed by many compute nodes → One jumbo job could be
processed by many workers

– Workers don’t have to pop-up simultaneously → Workload sharing with
asynchronous workers without node-boundaries

 Worker 4

Events

Jumbo job
+ 4 workers

 Worker 2

 Worker 1

 Worker 3

 CPU core 4

Events

Standard job
+ 4 core node

 CPU core 2

 CPU core 1

 CPU core 3

a single node worker or
a small MPI worker with multiple nodes

10

Theta/Titan Workflow with ALCC
➢ Limitation on the number of concurrent batch workers →

needs a large workload for each worker
➢ Current workflow and plugins

– ManyToOne
– Cobalt or SAGA plugins
– Pilot mover (rucio download/upload) or GlobusOnline plugins

➢ Issues
– GO transfers files efficiently but limitation is tight

• To reduce transfer tasks by grouping files in harvester like
an example or using Rucio

– Jobs with similar execution time are required to avoid
having idle nodes. I.e. custom tasks are still needed

➢ Future workflow for full automation
– ManyToOne + Event service

• The first successful job would terminate all the rest in the
same worker, in order to release all nodes simultaneously

– Jumbo jobs
• As ManyToOne + Event service still has the problem with

small jobs which could terminate workers too quickly

https://github.com/PanDAWMS/panda-harvester/blob/master/pandaharvester/harvesterstager/dummy_bulk_stager.py

11

NERSC Workflow
➢ Like a big computer cluster

– Outbound network connections are available on
compute nodes, many batch workers can run in
parallel, and walltime limit is long enough due to
allocation

– The number of available CPUs can fluctuate
➢ Possible workflow and plugins

– Push + True pilot
– Slurm plugins
– Pilot mover or GO plugins

➢ Just a matter of when
– E.g. Edison and Cori-1 try first and Cori-2 migrates if

they are successful
➢ Ordinary jobs first to get rid of custom tasks
➢ Event service or jumbo jobs for optimal CPU usage

12

Titan Workflow with backfill
➢ Workers can be terminated by preemption → walltime

(i.e. optimal size of event chunk) is unpredictable
➢ Possible workflow and plugins

– Jumbo job + Multi-workers
– SAGA plugins
– Pilot mover plugins
– Backfill module

➢ Challenges
– Jumbo jobs and multi-workers are available, but not yet

tried in production environment
• Jumbo job is essentially just a large event service

job, but largeness is always a killer
– New Yoda
– New monitoring since traditional 1-to-1 mapping between

job and pilot is broken
– Backfill module to be integrated in harvester

13

Plans for HPC
➢ Bringing Theta/ALCF into production

– To fix a bug in mini-pilot which reports job was successful
although local transfer was not done → job is flagged as failed
in panda since output file is missing

– To reduce memory consumption of harvester
– To improve GO plugins to reduce the number of active transfer

tasks (up to 3)
– To improve mini-pilot to report missing job data, e.g. maxRSS,

cpuConsumptionTime, ...
➢ Migration of NERSC to Harvester

– Mini-pilot + traditional jobs first
– Yoda + event service jobs next

➢ Testing event service at Theta and Titan
➢ Getting rid of custom tasks for HPCs
➢ Full integration of HPCs with other pledge resources

without any manual interventions
➢ Trying advanced workflows like jumbo jobs and multi

workers

