
Solving of IO crisis with ATLAS
production at OLCF

Danila Oleynik UTA

Initial setup of ATLAS production at OLCF

• On initial steps of placing of ATLAS payloads to Titan was discovered that
ATLAS software generate high loading to Lustre metadata servers

• To cope this loading ATLAS software was moved to NFS filesystem, which
available at OLCF, but have limited quota: 50Gb

• All transient data, sqlite DB, jobs working directories etc. were placed to
Lustre, and in general should cause reasonable IO

2

Identifying of crisis
• At May 2017 we got permission to use up to 20 slots for PanDA pilots in

local batch queue of Titan: with our other constrains it give as possibility
to launch up to 6000 ATLAS jobs simultaneously (in case resources will be
available)

• It allowed to complete about 900K jobs in May. We collect about 20M
Titan CPU*hours

• June was a bit less successful, given available backfill: 690K completed
jobs, and some increasing of number of failed jobs.

• Increasing of execution time for some jobs to 90-120 minutes (and more)

• At July 6 I got complaint from OLCF support about highly IO metadata

intensive jobs, which impacted other users

3

IO crisis
"System administrators have alerted us that your jobs on Titan are currently
doing over 2 million metadata operations per job and causing congestion on the
metadata server. This is impacting other users' jobs.

To help the current situation, could you stop the jobs you have running on
Titan and limit to only 1 running job at a time? We have received several
reports of hangs on the atlas2 partition.»

We was allowed to launch up to 20 submissions in row, so total number of
metadata operations from ATLAS production may reach 40 millions
operations.

Lustre metadata servers were affected, and looks like that NFS some well
with loading.

Start Time: Jul 06, 2017 09:52:55
End Time: Jul 06, 2017 15:57:31
Nodes Used: 300

4

First action and starting of investigation
• Immediately maximum number of used slots was

decreased from 20 to 5 (from 6000 nodes to 1500
nodes)

• Stripping of working directories was changed to serve
big number of small files from one MPI rank (PanDA
job)

lfs setstripe -c 1[directory]

• Execution time of job decreased almost immediately to
40-60 minutes. IO profile changed - became more
‘solid'

• Unfortunately we didn’t get detailed information about
affected files etc. So we was needed to guess possible
sources of issues

Start Time: Jul 06, 2017 23:26:16
End Time: Jul 07, 2017 00:03:47
Nodes Used: 300

5

Initial suspected
• One of first suspected source of issue was shared access to sqlite DB.

• Sqlite DB require write access, so it was placed to Lustre and linked from

working directories through symlinks

• A set of changes was implemented:

• deprecate symlinks

• change priority of paths for looking up of DB

• finally move DB to RAM disk of working node

• Input data was moved to RAM disk of working data too

• Unfortunately, IO profile did not changed significantly

6

IO profiling with ‘strace'
• It was clear, that most of IO produced by ATHENA. To get more detailed

information typical job was wrapped with ‘strace’. Thanks for trick to
Vakho.

• 'Strace' produce high overhead and produce huge output

• Only few jobs was finished successfully with 'strace' wrapping

• ATLAS job used for the study: http://bigpanda.cern.ch/job?
pandaid=3558462700

• 'Strace' log file: https://cernbox.cern.ch/index.php/s/48s7ORjYww2F0hY

7

http://bigpanda.cern.ch/job?pandaid=3558462700
http://bigpanda.cern.ch/job?pandaid=3558462700
https://cernbox.cern.ch/index.php/s/48s7ORjYww2F0hY

Information gathering from ‘strace' log
• Summary of analysis of one ATHENA MP job (16 cores):

• Number of uniq files opened during execution: 6826

• Number of uniq ‘*.so’ files opened during execution: 1899

• Number of uniq ‘*.py(c)’ files opened during execution: 1475

Number of metadata operations from ATHENA MP job 16 cores
Open ok Open fail Stat ok Stat fail

ATLAS release area (NFS) 109987 371688 124522 318206
Lustre 2902 5860 2502 2356
Working directory (Lustre) 471 2605 365 995

• Reminder: one submission to Titan: from 15 to 350 ATHENA MP jobs

• Up to 20 simultaneous submissions

8

Why we have many calls to Lustre?
• Traversing of shared libraries through PYTHONPATH, PATH and

LD_LIBRARY_PATH

• Some of this variables was extended with paths to third party libraries (GRID

stuff etc.) These paths not needed for payload itself and can be cleaned

• Checking of current working directory first to find shared libraries:

• Small hack in athena.py helps to reduce it (thanks to Vakho)

import sys
sys.path=sys.path[1:]

Hack applied only at OLCF as experimental solution to see could it help with crisis and not
propagated to the Atlas code repository yet.

9

Results of optimization

10

Before optimization Environment cleanup ATHENA 'hack'

Start Time: Aug 15, 2017 23:56:11
End Time: Aug 16, 2017 01:01:16
Nodes Used: 350
batch id: 3567126

Start Time: Aug 18, 2017 01:46:04
End Time: Aug 18, 2017 02:58:22
Nodes Used: 350
batch id: 3570319

Start Time: Aug 21, 2017 01:02:42
End Time: Aug 21, 2017 02:16:04
Nodes Used: 350
batch id: 3573737

Good, but not enough
• Even with decreasing of IO with ~factor 4 it still was high.

• Next step was moving of whole working directory to RAM disk of
computing node with synchronisation of files to Luster at the end of job.

• Understanding of overhead of this operations require scalability tests:

• Copy of ~4Gb files for each node for: 1,5,150,400 and 800 nodes job and measure spent time.

• 5 measurements for each scale

11

Results combined (average copy time)

• Slow (non proportional) increasing of copy time

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5

5 nodes 1 node 150 nodes
400 nodes 800 nodes

0

10

20

30

40

1 node 5 nodes 150 nodes 400 nodes 800 nodes

 AVG copy time (sec)

12

Results combined (average copy time)

• Acceptable delay even for big jobs

0

7

14

21

28

35

42

49

56

63

70

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

28
1

29
5

30
9

32
3

33
7

35
1

36
5

37
9

39
3

40
7

42
1

43
5

44
9

46
3

47
7

49
1

50
5

51
9

53
3

54
7

56
1

57
5

58
9

60
3

61
7

63
1

64
5

65
9

67
3

68
7

70
1

71
5

72
9

74
3

75
7

77
1

78
5

79
9

1 node 5 nodes 150 nodes 400 nodes 800 nodes

13

Moving of working directory to RAM-disk. Results

14

Before optimization Environment cleanup ATHENA 'hack' Working dir in RAM Disk

Start Time: Aug 15, 2017 23:56:11
End Time: Aug 16, 2017 01:01:16
Nodes Used: 350
batch id: 3567126

Start Time: Aug 18, 2017 01:46:04
End Time: Aug 18, 2017 02:58:22
Nodes Used: 350
batch id: 3570319

Start Time: Aug 21, 2017 01:02:42
End Time: Aug 21, 2017 02:16:04
Nodes Used: 350
batch id: 3573737

Start Time: Sep 04, 2017 03:19:01
End Time: Sep 04, 2017 04:00:00
Nodes Used: 350
batch id 3602038

• Significant reduction of IO. Number of ‘open' operations almost matches with number of close operations.

• Initial spike came form MPI wrapper which used to launch ATHENA Job on computing node. Already reduced with same fix like athena.py

• Current setup of ATLAS production at OLCF

• ATLAS releases: NFS

• Job working directories and input data: RAM disk of computing node

• Output data moved to Lustre at the end of the job

Increasing of loading
• 11 of September we got a 'green light’ from OLCF to increase loading.

• Number of Pilots increased step by step last week from 5 to 15 with maximum size of Pilot: 350 PanDA jobs.

• No visible increasing of execution time

• IO carefully monitored: in general there is no increasing of median of copy latency: 10 - 18 seconds of copy of

input data to RAM-disk, ~0,8 second of copy of output data to Lustre

0

5

10

15

20

5 pilots (1750 nodes) 02.09.17
03.09.17

04.09.17

05.09.17

06.09.17

07.09.17

08.09.17

09.09.17

10.09.17
8 pilots (1750 nodes) 11.09.17
12.09.17
10 pilots (3500 nodes) 13.09.17

12 pilots (4200 nodes) 14.09.17
15.09.17
15 pilots (5250 nodes) 16.09.17
17.09.17

Median (Lustre -> RAM): Median (RAM -> Lustre):

15

N
od

es

0
900

1800
2700
3600
4500
5400
6300
7200
8100
9000
9900

10800
11700
12600
13500
14400
15300
16200
17100
18000

01
.0

9.
20

17
 0

0:
01

:3
5

01
.0

9.
20

17
 0

8:
26

:4
6

01
.0

9.
20

17
 1

6:
54

:0
0

02
.0

9.
20

17
 0

1:
28

:1
4

02
.0

9.
20

17
 0

9:
56

:1
7

02
.0

9.
20

17
 1

8:
13

:2
4

03
.0

9.
20

17
 0

2:
41

:4
2

03
.0

9.
20

17
 1

1:
04

:4
5

03
.0

9.
20

17
 1

9:
28

:1
9

04
.0

9.
20

17
 0

4:
14

:4
3

04
.0

9.
20

17
 1

2:
47

:1
4

04
.0

9.
20

17
 2

1:
34

:1
3

05
.0

9.
20

17
 0

6:
14

:2
4

05
.0

9.
20

17
 1

5:
00

:5
2

05
.0

9.
20

17
 2

3:
16

:2
9

06
.0

9.
20

17
 0

7:
49

:4
5

06
.0

9.
20

17
 1

6:
43

:1
7

07
.0

9.
20

17
 0

1:
22

:2
5

07
.0

9.
20

17
 1

0:
01

:0
0

07
.0

9.
20

17
 1

8:
55

:1
4

08
.0

9.
20

17
 0

3:
16

:2
3

08
.0

9.
20

17
 1

2:
01

:3
9

08
.0

9.
20

17
 2

0:
51

:4
3

09
.0

9.
20

17
 0

5:
22

:1
5

09
.0

9.
20

17
 1

4:
03

:0
0

09
.0

9.
20

17
 2

2:
22

:4
4

10
.0

9.
20

17
 0

6:
59

:4
7

10
.0

9.
20

17
 1

5:
21

:4
7

10
.0

9.
20

17
 2

3:
43

:3
0

11
.0

9.
20

17
 0

8:
16

:4
9

11
.0

9.
20

17
 1

6:
50

:2
6

12
.0

9.
20

17
 0

1:
22

:2
4

12
.0

9.
20

17
 0

9:
52

:2
7

12
.0

9.
20

17
 1

8:
30

:3
4

13
.0

9.
20

17
 0

3:
15

:3
4

13
.0

9.
20

17
 1

1:
34

:1
6

13
.0

9.
20

17
 2

0:
10

:3
4

14
.0

9.
20

17
 0

4:
48

:0
3

14
.0

9.
20

17
 1

3:
01

:1
0

14
.0

9.
20

17
 2

1:
26

:5
7

15
.0

9.
20

17
 0

5:
58

:0
3

15
.0

9.
20

17
 1

4:
23

:4
7

15
.0

9.
20

17
 2

2:
46

:1
3

16
.0

9.
20

17
 0

7:
07

:3
3

16
.0

9.
20

17
 1

5:
38

:5
0

17
.0

9.
20

17
 0

0:
08

:3
6

17
.0

9.
20

17
 0

9:
57

:3
8

17
.0

9.
20

17
 1

8:
40

:0
0

18
.0

9.
20

17
 0

3:
02

:0
3

18
.0

9.
20

17
 1

1:
38

:1
5

18
.0

9.
20

17
 2

0:
05

:5
8

19
.0

9.
20

17
 0

4:
39

:2
9

19
.0

9.
20

17
 1

3:
04

:4
7

19
.0

9.
20

17
 2

1:
54

:3
6

ATLAS production
Backfill
Unusable

Increasing of loading

16

Conclusion
• It took about 2 month of investigation, fixing and proving of solution

• Different specialist was involved: OLCF support team and sysadmins,

ATHENA developers, PanDA team

• It’s site specific optimisation, but study can be used by other site and

future development

17

