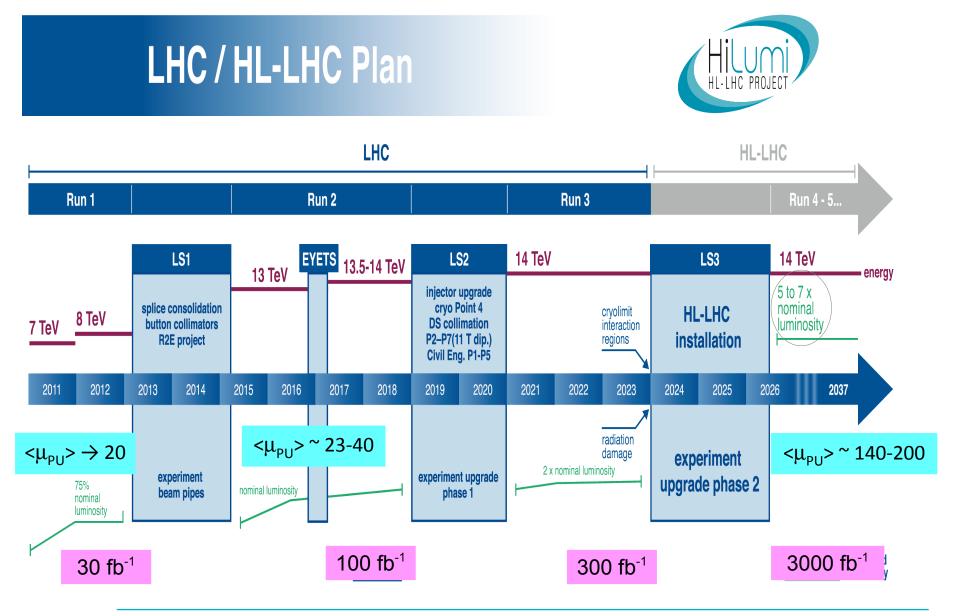


Computing physics at High-Luminosity LHC

S. Jézéquel

LAPP (CNRS-Université Savoie Mont-Blanc)


TIM 2017

High Luminosity LHC (2024-2037)

Target : Gain an order of magnitude in integrated luminosity compared 300 fb⁻¹ at Run-3 (O(50 fb⁻¹) nowdays)

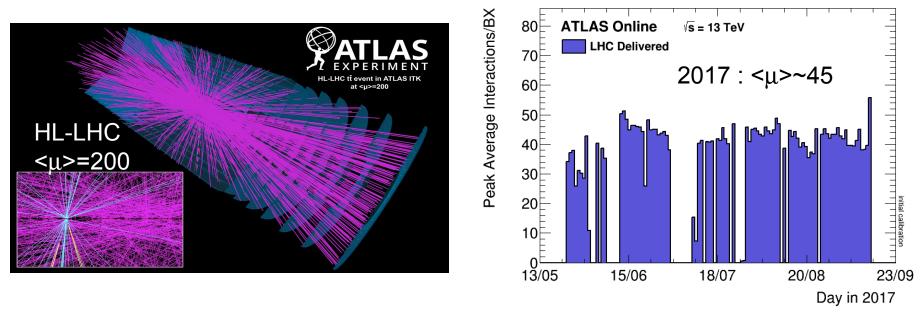
Physics goal : Search for new physics and better understand of SM Precision measurements :

Factor 10 in luminosity \rightarrow Factor V10 in statistical precision

Bias effect ('systematic') critical more often \rightarrow more studies = more MC

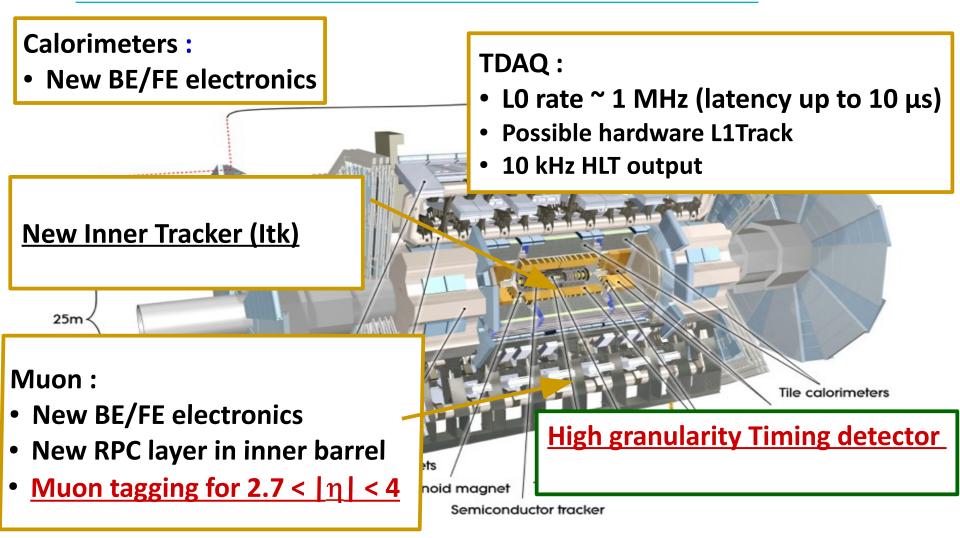
Very rare decays

 $H \rightarrow \mu\mu$ (Decay probability : O(10⁻⁴))


Double Higgs production \rightarrow access to

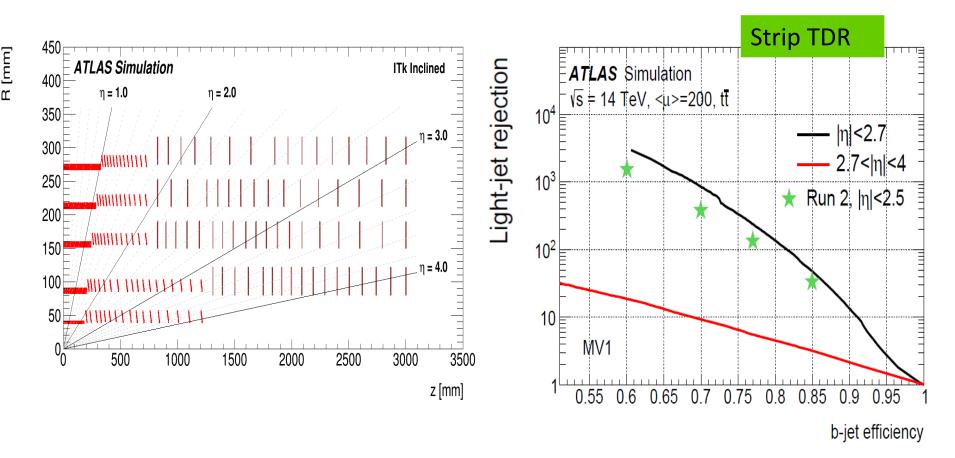
Higgs self-coupling (first observation expected)

Detector running conditions


High particle density

Detector requirements to maximize benefits from high int. luminosity:

- Replace sub-detector not sustaining integrated radiation dose
- Minimize degradation from pile-up (high granularity, fast timing)
- Improve or maintain current detector performances
- Allow higher event rate to increase trigger acceptance
 - S. Jezequel, TIM17


ATLAS Phase-II detector upgrades

- Still under evaluation
- <u>New detector</u>

S. Jézéquel, TIM17

Detector performances : b-tagging

Similar performances as Run-2 for $|\eta| < 2.7$ Significant jet rejection at large η

S. Jézéquel, TIM17

Search for HH \rightarrow bbyy ATL-PHYS-PUB-2014-016 **ATLAS** Simulation Preliminary ATL-PHYS-PUB-2017-001 $\sqrt{s} = 14 \text{ TeV}: \left[\text{Ldt} = 300 \text{ fb}^{-1} ; \right] \text{Ldt} = 3000 \text{ fb}^{-1}$ 140 GeV $H \rightarrow \gamma \gamma$ (comb.) Stat. Unc. ATLAS Events / 5 ($HH \rightarrow bb\gamma\gamma$ Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}$ Single H $H \rightarrow ZZ$ (comb.) $\mu = \sigma / \sigma_{SM}$ bbγγ Reducible $H \rightarrow WW \text{ (comb.)}$ 80 Others Ī 60 $H \rightarrow Z\gamma$ (incl.) 40 m_{yy} (comb.) $H \rightarrow b\overline{b}$ 20 $H \rightarrow \tau \tau$ (VBF-like) 100 240 120 160 180 200 220 140 H→µµ (comb.) $m_{\gamma\gamma}$ [GeV] <µ_{PU}>=200 0.2 0.4 0 $\Delta \mu / \mu$ <µ_{PU}>=140 ~10 selected signal events with all data

S. Jezequel, PAF17

Results

Higgs branching ratios

PP

Upgrade Phase-II documents in 2017-2018

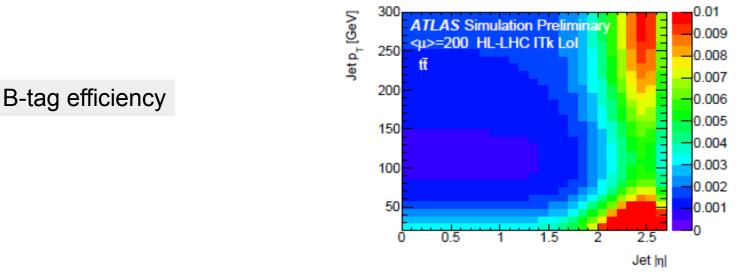
	Q1	Q2	Q3 (Q4
2017		Muon TDR	LAr TDR (🖌) Tile TDR (🖌) HGTD IDR (🗸)	Pixel TDR TDAQ TDR Lumi region Yellow Report Kickoff
2018		Yellow Report workshop?		HL/HE-LHC Yellow Report

- IDR : Initial Design Review (First internal evaluation of detector interest)
- TDR : Technical Design Report (Public document to LHCC + Funding Agencies)
 - Physics benchmarks for each TDR whose goal
 Quantify and split effects from higher luminosity and detector upgrades

→HE-LHC:FCC magnets in LHC tunnel $\rightarrow \sqrt{s^27}$ GeV and µ=800 (to be evaluated)

- Target in 2017:
 - Optimise detector and analysis cuts to prepare HL-LHC (high-pileup)

→ Detector changes each 6 months (will converge in 2018)


- Provide list of physics topics accessible at HL-LHC and measurement precision
- Demonstrate that the huge background samples will be understood
- Reasons to not do simul+digi+reco chain on all events as in Run2 :
 - Detector layout still evolving each 6 months (will converge in 2018)
 - Limitation in ressources : CPU and memory usage (next slide)
 - Precise measurement or rare events :
 - \rightarrow Need to control precisely the background level and shapes
 - \rightarrow require huge number of background events

- Information from Hector de la Torre (current responsible for Upgrade Production) comparing Run-2 / HL-LHC (mu=200)
- Simulation
 - No pileup yet
 - Similar CPU per event and memory (PSS per core)
- Digi+Reco
 - Add pileup events to the interesting event
 - Memory : 3.2 3.6 GB / core (depends on the number of cores per job) while 1.6 GB/core for Run-2
 - Wallclocktime to process event multiplied by factor 10

→ <u>Do not do simul+digi+reco chain on all events as in Run2</u>

Current analysis tools for HL-LHC

- Current procedure to produce expected results
 - Fully simulated/reconstructed events :
 - Single particles
 - Benchmark channels for signal/background : H-> $\gamma\gamma$, Z \rightarrow ee, multijets,...
 - Tasks currently requested
 - \rightarrow Produce efficiency/rejection maps vs (η ,Pt) applied on truth events

Pending issue with smearing functions: Control of background systematics

S. Jézéquel, TIM17

- HL-LHC : More data and MC, more memory, more CPU,
- First iteration on analysis results already done at HL-LHC
 - → Basic software (tracking,...) available
 - Still room for CPU usage optimisation (Itk)
- Few items for short term
 - \rightarrow Switch to release 21 and git
 - \rightarrow Use premixed PU events
- Pending issues :
 - Fastdigi and fastreco : Will it used ?
- But we are not doing detailed analysis as physicists are used to do
 - Precise measurements requires optimal software/computing resources