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1. Introduction to Pythia 8
Responsible: Thiago, Amanda

Pythia 8 is a tool for generation of high-energy collisions. The particles are pro-
duced in vacuum. Pythia 8 contains many libraries of hard interactions and models
for initial and final state parton showers showers, multiple parton-parton interac-
tions, beam remnants, string fragmentation and particle decays It also has a set of
utilities and interfaces to external programs. Thus, it is possible to run Pythia with
applications such as Root or Fastjet.

Currently, the program only works with pp, pp, e−e+ and µ+µ− incoming
beams. The list of all processes already implemented can be seen in [? ].

2. Program Flow
In Pythia context, an event represents a collision (the main one). Thus, a collision
between p− and p+ can be understood as an Pythia event.

Basically, a Pythia simulation can be done in three steps:

1. Initialisation: here the main settings of the event (main collision) such are set
up. Some of these settings are:

• the energy of the initial beams at the LHC

• the processes swittched on

Sometimes, we can choose the particles which will appear in the list according
to some particle attribute such as the transverse momentum.

2. Generation of individual events: the event loop and conditions to perform
analysis.

3. Statistics: generation of statistics and histograms about the event

3. A Hello World Program
In order to clarify the program flow, there is an example of a Pythia simulation. This
example is based on the main01 example of Pythia 8 [? ].

So:
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• Event: We generate 100 events of a proton-proton collision, energy of 8000
TeV at LHC.

• Processes: all processes from the HardQCD group are enabled. In order
to understand other kinds of processes, see: http://home.thep.lu.se/ tor-
bjorn/pythia81html/Welcome.html.

• Listing Condition: all particles which pT ≥ 20 GeV.

• Statistics: histogram showing the number of particles which are final and
charged X number of events with these number of particles.

Therefore:

#include "Pythia8/Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main() {

// Set up generation.

Pythia pythia; // Declare Pythia object

pythia.readString("Beams:eCM = 8000."); // 8 TeV CM energy.

pythia.readString("HardQCD = on"); // Switch on all HardQCD processes.

pythia.init();

Hist mult("charged multiplicity", 100, -0.5, 799.5); // Set up histogram

// Begin event loop. Generate event. Skip if error.

for (int iEvent = 0; iEvent < 100; ++iEvent) {

if (!pythia.next()) continue;

// Find number of all final charged particles and fill histogram.

int nCharged = 0;

for (int i = 0; i < pythia.event.size(); ++i)

if (pythia.event[i].isFinal() && pythia.event[i].isCharged())

++nCharged;

mult.fill( nCharged ); //Fill the histogram

// End of event loop. Done :)

}

pythia.stat();



4. The Output 5

return 0;

}

Notes:

1. If there are many initial settings, it is better setting up these parameters from
an external file pythia.readFile("main03.cmnd") instead of using the
pythia.readString("") instruction.

2. Pythia will list in the output file only the particles which belong to the first
event.

4. The Output
The Pythia 8 output files from main0n examples are basically the list of particles
produced in the first event. If any listing condition such as a minimum transverse
momentum is applied, this list will contain only particles which satisfy the condition.
The output file can also contain histograms.

In the list, each line represents a particle and each column shows an attribute
of it. These attributes are:

• id: this code indicates the kind of the particle according to the PDG par-
ticle codes []. For example: code 2212 is assigned to the proton (p) and
code −2212 is assigned to the antiproton p.

• status: status code. The full set of codes provides information on where
and why a given particle was produced. The key feature is that a particle
is assigned a positive status code when it is created, which then is negated
if later it branches into other particles. The mechanism of this branching
can be inferred from the status code of the daughters. Thus, at any given
stage of the event-generation process, the current final state consists of the
particles with positive status code.

• mothers/daughters: shows the relation between particles. Naturally, if a
particle generates another, the first is the mother of the second.

• m: the particle mass.

• px: component x of the transverse momentum.

• py: component y of the transverse momentum.
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• pz: component z of the transverse momentum.

• e: the fourth component of the momentum.

In order to learn more attributes, see [? ]

5. Link to Other Programs
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6. Sample Generation
Responsible: Thiago, Amanda

6.1 Introduction to Pythia 8

Pythia 8 is a tool for generation of high-energy collisions. The particles are produced
in vacuum. Pythia 8 contains many libraries of hard interactions and models for
initial and final state parton showers showers, multiple parton-parton interactions,
beam remnants, string fragmentation and particle decays It also has a set of utilities
and interfaces to external programs. Thus, it is possible to run Pythia with applica-
tions such as Root or Fastjet.

Currently, the program only works with pp, pp, e−e+ and µ+µ− incoming
beams. The list of all processes already implemented can be seen in [? ].

6.2 Program Flow

In Pythia context, an event represents a collision (the main one). Thus, a collision
between p− and p+ can be understood as an Pythia event.

Basically, a Pythia simulation can be done in three steps:

1. Initialisation: here the main settings of the event (main collision) such are set
up. Some of these settings are:

• the energy of the initial beams at the LHC

• the processes switched on

Sometimes, we can choose the particles which will appear in the list according
to some particle attribute such as the transverse momentum.

2. Generation of individual events: the event loop and conditions to perform
analysis.

3. Statistics: generation of statistics and histograms about the event

6.3 A Hello World Program

In order to clarify the program flow, there is an example of a Pythia simulation. This
example is based on the main01 example of Pythia 8 [? ].

So:
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• Event: We generate 100 events of a proton-proton collision, energy of 8000
TeV at LHC.

• Processes: all processes from the HardQCD group are enabled. In order
to understand other kinds of processes, see: http://home.thep.lu.se/ tor-
bjorn/pythia81html/Welcome.html.

• Listing Condition: all particles which pT ≥ 20 GeV.

• Statistics: histogram showing the number of particles which are final and
charged X number of events with these number of particles.

Therefore:

#include "Pythia8/Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main()

{

// Set up generation.

Pythia pythia; // Declare Pythia object

pythia.readString("Beams:eCM = 8000."); // 8 TeV CM energy.

pythia.readString("HardQCD = on"); // Switch on all HardQCD processes.

pythia.init();

Hist mult("charged mult", 100, -0.5, 799.5); // Set up histogram

// Begin event loop. Generate event. Skip if error.

for (int iEvent = 0; iEvent < 100; ++iEvent) {

if (!pythia.next()) continue;

// Find number of all final charged particles and fill histogram.

int nCharged = 0;

for (int i = 0; i < pythia.event.size(); ++i)

if (pythia.event[i].isFinal() && pythia.event[i].isCharged())

++nCharged;

mult.fill(nCharged); //Fill the histogram

// End of event loop. Done :)

}

pythia.stat();

return 0;

}

Notes:
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1. If there are many initial settings, it is better setting up these parameters from
an external file pythia.readFile("main03.cmnd") instead of using the
pythia.readString("") instruction.

2. Pythia will list in the output file only the particles which belong to the first
event.

6.4 The Output

The Pythia 8 output files from main0n examples are basically the list of particles
produced in the first event. If any listing condition such as a minimum transverse
momentum is applied, this list will contain only particles which satisfy the condition.
The output file can also contain histograms.

In the list, each line represents a particle and each column shows an attribute
of it. These attributes are:

• id: this code indicates the kind of the particle according to the PDG par-
ticle codes []. For example: code 2212 is assigned to the proton (p) and
code −2212 is assigned to the antiproton p.

• status: status code. The full set of codes provides information on where
and why a given particle was produced. The key feature is that a particle
is assigned a positive status code when it is created, which then is negated
if later it branches into other particles. The mechanism of this branching
can be inferred from the status code of the daughters. Thus, at any given
stage of the event-generation process, the current final state consists of the
particles with positive status code.

• mothers/daughters: shows the relation between particles. Naturally, if a
particle generates another, the first is the mother of the second.

• m: the particle mass.

• px: component x of the transverse momentum.

• py: component y of the transverse momentum.

• pz: component z of the transverse momentum.

• e: the fourth component of the momentum.

In order to learn more attributes, see [? ]

6.5 Link to Other Programs
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7. Jet Finding and Preprocessing
Responsible: Thiago

After generating jet events with Pythia, we convert them to jet images in order
to treat them with Machine Learning tools that are already configured for image
recognition. In contemporary particle physics experiments, the particles that make
up a hadronic jet are reconstructed individually through the signals they leave in the
different subsystems that make up the detector, and any further analysis is made on
those reconstructed particle candidates. In this study we take a simpler approach,
working only with

We consider a very simplistic detector model, composed only of a segmented
calorimeter - a detector made of individual cells that are capable of measuring the
total energy deposited in them by particles of any kind, but that cannot distinguish
the signal deposited by different particles in the same cell. The calorimeter follows
roughly the geometry of the real systems present at both the ATLAS and CMS exper-
iments: the calorimeter is segmented in both η and φ directions, having 63 bins that
cover the range [−π, π] in φ and 50 bins that cover the range [−2.5, 2.5] in η, leading
to a grand total of 3150 cells of size (0.1× 0.1). For each event, we convert it to a
“calorimeter representation” by looping over the list of visible particles and adding
its transverse energy to the corresponding cell. Figure 1 shows the representation of
a dijet (background) event in the simulated calorimeter. This step is equivalent to the
creation of the digital image itself, where information about the individual photons
that hit the pixels is lost but the total amount of energy that hit each pixel is available.

7.1 Jet Finding

In order to identify hadronic jets in the calorimeter, we use the Fastjet framework [].
We model each calorimeter cell by a massless 4-vector where the (η, φ) coordinates
are taken as the center of the cell and its transverse energy ET is taken as the total
transverse energy deposited in the cell. This step brings us to an event representation
in the form of a list of 3150 4-vectors that can be input to Fastjet in order to find
hadronic jets. We use the Cambridge-Aachen jet algorithm [], with a characteristic
size R = 1.2, and consider only jets with pT above 30 GeV. We consider only the
leading jet in each event, and only if it has pT in a given range; the full set of pT

intervals considered in this study is 250–300, 450–500, 600–650, 750–800, 950–1000,
1150–1200 and 1400–1450 GeV.
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Figure 1: Example of calorimeter representation of event. The x-axis of the plot
represents the η coordinate, while the y-axis represents the φ coordinate. The z-axis
represents the total ET in the each calorimeter cell. The event is a dijet (background)
event, where the leading jet has pT = 258 GeV, η = 1.1, φ = 0.88 and mass = 69 GeV.

7.2 Preprocessing

Preprocessing must be done in the jet images in order to input them to the machine
learning frameworks. The first step or preprocessing is noise reduction, which in our
case can be done with the so called jet trimming []. Jet trimming is a particular tech-
nique for jet grooming that allows to reduce the effect of soft and collinear emissions
that may spoil the jet kinematic resolution; it is also useful to minimise the effects of
pileup interactions in the jet. We employ trimming with the kT jet algorithm [] and a
minimum subjet pT fraction of 5%. In order to select good events for the list of inputs
to the ML, we discard events where the trimmed jet has mass outside of the range
65–95 GeV. The trimmed jet has a reduced list of components; from this point on,
we work only with the trimmed jet; operationally we achieve this by “zeroing” the
cells that comprise the jet in the calorimeter and refilling that region with the filled
components. That process is shown in Fig. 2

The next step in preprocessing is the definition of points of interest and the align-
ment step. The noise reduction step naturally defines the points of interest as the loca-
tion of the subjets that emerge post-trimming. Operationally, this is done as follows:

• We locate the cell that contains the jet centroid, and save only the cells in
a (25× 25) rectangle around it. In this way we guarantee that all cells in
a radius R = 1.2 are considered. We then do a translation to a local frame
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Figure 2: Example of calorimeter representation of event. The x-axis of the plot
represents the η coordinate, while the y-axis represents the φ coordinate. The z-axis
represents the total ET in the each calorimeter cell. In the left plot, the cells located
around the leading jet are zeroed out, while in the right plot those cells are replaced
by the trimmed components.

(x, y) such that in this frame the centroid cell is at (0, 0).

• We do a rotation to another local frame (x′, y′) such that in this frame the
leading subjet has a higher y′ coordinate than the subleading subjet, while
their x′ coordinates are identical; if there is only one subjet no rotation is
performed.

• If the sum of ET of the cells with x′ < 0 is smaller than the sum of ET of
the cells with x′ ≥ 0, we do a reflection transformation x′′ = −x′.

The final preprocessing step is the normalisation step. This step reduces the
range of values in the features input to the ML. In our case, we simply rescale the ET

of the calorimeter cells by a constant factor c such that:

1
c ∑

i
E2

T,i = 1 (1)

The whole alignment and normalisation process is illustrated in Fig. 3

The content of the cells that comprise the jet is then saved in a plain text file.
The contents of all the cells are saved sequentially, in the following format:

ET(η1, φ1), ET(η1, φ2), . . . , ET(η1, φ63),

ET(η2, φ1), ET(η3, φ2), . . . , ET(η2, φ63),

. . .

ET(η50, φ1), ET(η50, φ2), . . . , ET(η50, φ63),

(2)
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Figure 3: Example of calorimeter representation of jet. The x-axis of the plot rep-
resents the η coordinate, while the y-axis represents the φ coordinate. The z-axis
represents the total ET in the each calorimeter cell. In the top left plot, the coordi-
nates have been changed such that the centroid cell is at (0, 0). In the top right plot,
a rotation has been executed such the vector that that connects the two subjets has
no x component. In the bottom left plot, a reflection has been executed such that the
sum ET of all cells with x < 0 is smaller than the sum ET of all cells with x ≥ 0.
Bottom right: all cells have their content rescaled by c such that of 1

c ∑i E2
T,i = 1.
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8. Machine Learning Frameworks
Responsible: Jose, Rafael

8.1 Introduction to Machine Learning

Machine Learning (ML) is a broad field of research that provides general tools to
solve complex problems. In this context, Artificial Neural Networks are inspired in
the morphology and dynamics of the brain to create advanced computational mod-
els. The analogy remarks the ability of the human brain to perform classification
tasks with outstanding performance; for instance, we are able to recognise images
of familiar faces in less than 200 ms, while modern computers still require longer
training sessions.

Fundamentally, Machine Learning is a mean of building a model of data. It can
be understood as the development of mathematical models which helps understand-
ing and recognizing patterns in data sets. These models have parameters which are
fitted according to the observed data. Therefore, a data set works as the input for
the model and once the model have been fit to previously seen data, it can be used
to predict, recognize patterns, and even understand aspects of newly observed data.
This way, the program can be considered to be learning from the data.

There are two kinds of Machine Learning: supervised and unsupervised learn-
ing. Supervised learning involves modelling a relationship between measured fea-
tures of data and some label associated with it. Once the model is done, it can be
used to apply labels to unknown data. An example of supervised learning consists
of classifying jets into categories: signal or background.

Unsupervised learning involves modeling the features of a dataset without ref-
erence to any label. These models include tasks such as clustering and dimension-
ality reduction. Clustering algorithms identify distinct groups of data, while dimen-
sionality reduction algorithms search for more succinct representations of the data.
Unsupervised learning models use the intrinsic structure of the data to determine
which subsets of data are related or not.
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8.2 Machine Learning in High Energy Physics

The greatest challenge at the LHC at CERN is to collect and analyse data in a efficient
way. Thus, sophisticated Machine Learning methods have been researched in order
to tackle this problem.

In a collision between two protons p+p+ lots of particles are generated, as de-
picted in Fig. 4. Hadronic jets are the characteristic signature of quarks in high
energy colliders. The identification of jets originating from boson decays and those
coming from QCD processes is quite relevant in many analyses, in order to separate
interesting signal events from unwanted backgrounds. Common methods for jet
identification involve jet grooming techniques such as trimming, pruning, and soft
drop, along with jet substructure variables such as N-subjettiness. The convenience
of a jet classifier based on these features is justified by its simplicity and acceptable
performance; nevertheless, more elaborated data analysis techniques may bring im-
portant improvements in terms of efficiency.

1 1

1

1
1

1
1

1
1

1

1
1

1 1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1 1 1

11
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

CMYK - 95c / 9m / 0y / 83kPantone - PMS 547U

Logo: Small Color: please use the mix appropriate to your application

Default Typefaces

DEFAULT SAN SERIF TYPEFACE DEFAULT SERIF TYPEFACE

Arial
Regular
Italic
Bold
Bold Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890

Rev 09/23/14

RGB - R 0 / G 57 / B 90 

Berkeley Lab Logo Usage

Times New Roman
Regular
Italic
Bold
Bold Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890

Logo: Large

2Quantum Chromodynamics (QCD)

Ben	Nachman
DS@HEP	2017

Figure 4: Quantum Chromodynamics (QCD) and formation of jets.

In this work, we handle the problem of jet classification in experimental high
energy physics by using ML algorithms. First, we apply computer vision techniques
to transform a hadronic jet into an image of 25 × 25 pixels, where each pixel rep-
resents a calorimetric cell (Fig. 5). Consequently, we evaluate the performance of
different classifiers in a sample of simulated events; the signal corresponds to high



8. Machine Learning Frameworks 16

energy jets coming from W/Z events, and the background corresponds to similar
jets coming from QCD processes. Finally, the results and benefits of the ML imple-
mentation are compared with the traditional N-subjettiness approach.
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8.3 ML Frameworks and Algorithms

We use standard Python programming interfaces such as scikit-learn, tensor-flow,
and keras, for the implementation of the algorithms: logistic regression, random
forest, multilayer perceptron, and convolutional neural networks.
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9. Results
Responsible: Jose, Rafael, Thiago

9.1 Jet substructure analysis

The N-subjettiness τN [1] quantifies the capability of clustering the jet constituents
in exactly N subjets. The ratio τ21 = τ2/τ1 is a powerful discriminant between jets
originating from hadronic V decays and from gluon and single-quark hadronization.
Jets coming from hadronic W or Z decays are characterized by lower values of τ21,
given the two-prong substructure of the jet constituents. Fig. 6 shows the distribu-

Figure 6: Distribution of the N-subjettiness τ21 variable for signal and background.

tion of the N-subjettiness τ21 for high energy jets coming from W/Z processes, and
for similar jets coming from QCD processes.

Using logistic regression, we estimate a predicted probability of the form g(z) =
1/(1+ e−z) that assigns samples of outputs larger or equal to 0.5 to the positive class,
and the rest to the negative class. The predicted probability returned by the logistic
regression model is shown in Fig. 7.

We set τ21 = 0.37 as the separation boundary between the positive and the
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Figure 7: Predicted probability returned by the logistic regression model. The sepa-
ration between the positive (signal) and the negative (background) class happens at
the N-subjettiness value equal to τ21 = 0.37 .

negative class, as determined by the logistic regression. The true positive rate (TPR)
and false positive rate (FPR) of the N-subjettiness classifier are:

TPR = 0.7105 , FPR = 0.2717 . (3)
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9.2 Machine Learning models

Figure 8: ROC curve obtained by different algorithms Multilayer Perceptron, Logis-
tic Regression, and Random Forest.
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Figure 9: Accuracy score obtained by the different algorithms.
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Figure 10: ROC curve obtained by the different algorithms.
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10. Conclusion
Responsible: all
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