LHC Detector Upgrade Plans

Andreas Korn, University College London

Andreas.Korn@cern.ch

IOP Institute of Physics

Particle Detectors and Instrumentation UK

25 September 2017, Institute of Physics, London, UK

Disclaimer

- Very limited time \rightarrow selection to personal taste
- Largely restrict to PHASE 2 upgrades
- A lot of great ongoing work in ATLAS, CMS & LHCb \rightarrow impossible to do proper justice in 25 min
- Apologies for any omissions & a slight ATLAS bias
- Updated version of HEPP talk https://indico.shef.ac.uk/indico/event/1/contribution/16/material/slides/0.pdf

LHC Upgrade: HL-LHC

High Luminosity Large Hadron Collider

• Luminosity:

 $300 \text{ fb}^{-1} \rightarrow 3-4000 \text{ fb}^{-1}$

- Inst. Luminosity: $L > 1.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ \downarrow $L = 7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Luminosity leveling
- Pile-up collisions:

40 → <mark>140/200</mark>

Î

HL-LHC Schedule

· 3 B

Physics Motivations

- Higgs precision measurements
 Fermion couplings
 - Rare decays
- Higgs self coupling
- Understanding CP Violation
- Dark Matter
- New Physics Searches

 Direct
 Direct
 - Indirect (Loops!)
- Exclude SUSY models

Current LHC Detectors

Detector challenges

- Accelerator conditions
 - High rate
 - \rightarrow readout speed/buffers
 - \rightarrow fast data selection/trigger
 - − High occupancy → Granularity
 - 40 interactions \rightarrow 140 !

Simulated Event Display at 140 PU (102 Vertices)

Detector challenges: radiation

Radiation hardness
 – Pixel region

- Up to $2x10^{16} n_{eq} cm^{-2}$
- Up to 10 MGy

CMS Upgrade Overview

New Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to $\eta \sim 4$

Muons

- Replace DT FE electronics
- Complete RPC coverage in forward region (new GEM/RPC technology)
- Investigate Muon-tagging up to $\eta\sim 3$

Barrel ECAL

- Replace FE electronics
- Cool detector/APDs

Trigger/DAQ

- L1 (hardware) with tracks and rate up \sim 750 kHz
- L1 Latency 12.5 μs
- HLT output rate 7.5 kHz

Other R&D

- Fast-timing for in-time pileup suppression
- Pixel trigger

Andreas Korn IOP Instrumentation, 25th September

New Endcap Calorimeters

- Radiation tolerant
 - High granularity

ATLAS Upgrade Overview

LHCb Upgrade Overview

- LHCb performance NOT machine limited (luminosity leveled) $4 \rightarrow 20 \rightarrow 200 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- Detector upgrades 8 fb⁻¹ \rightarrow 50 fb⁻¹ \rightarrow 300 fb⁻¹
- Show both LHCb Phase I & II
- New Velo
- Tracker

Î

- Particle ID
 RICH/TORCH
- Muon/Calo readout Phase-II Upgrade
- Smaller ECAL cells

Andreas Korn IOP Instrumentation, 25th September

11

Detector trends

High granularity silicon trackers ATLAS, CMS & LHCb ATLAS/CMS: Large eta (η~4) tracking coverage → Improved MET resolution

Detector trends: tracker geometry

Ideally: constant track density (pixel occupancy) in all sensors The track density is constant in eta at LHC • up to phase space limit, which is above eta 2.5 for many processes of interest Achieved on a cylindrical surface -> barrel-only layout?

Ideally tracks coming from the I.P. should cross the sensors perpendicularly (to minimize material and minimize number of sensors needed)

• This condition implies a spherical surface for point source, ellipsoid for the LHC beam spot

Transverse momentum accuracy should be constant in eta

- the B field integral along tracks should be constant
- In a solenoidal field this implies cylindrical layers, constatnt radial lever arm

 Reminder: the momentum accuracy is proportional to the square of the radial lever arm

T.Todorov, October 2011

ATLAS: Tracker Upgrade

 Inclined pixel layout R [mm] 1400 ATLAS Simulation Preliminary ITk Inclined Endcap Rings 1200 n = 1.0 1000 η **= 2.0** 800 600 400 η **= 3.0** 200 η **= 4.0** 3500 1000 15003000 500 20002500 z [mm] Titanium CO2 cooling pipe Electrical services (flex) embedded in ring. embedded in ring. Andreas Korn IOP Instrumentation, 25th September Î 14

Î

ATLAS: Tracker Upgrade

- Strip tracker: pitch 75.5 µm
- Short & long strips 24.1/48.2mm
- L0/L1 deep buffers
- Powered with DC-DC converters

CMS: Tracker Upgrade

'Tilted' inner parts of Outer Tracker
 Double sided modules

 2S (strip-strip)
 PS (pixel-strip)

Detector trends

ATLAS/CMS Pixel readout chip development: RD53

RD53 ASIC 65 nm

Pitch:
 50 x 50 μm²

supports also
 25 x 100 µm²
 pixels

 RD53A chip (400x192 pixels) submitted on 31.08.2017!

Heb Phase I Velo Upgrade

- 55 x 55 µm²
 Pixel sensors
- 26 x modules
 2 retractable halves
- 4 sensors/module
- 5.1 mm from beam
- Dose:
- $8x10^{15} n_{eq} cm^{-2}$
- VeloPix Chip: 20Gbit/s output

Detector trends: Timing

R&D: Experiments are investigating Timing detectors

- Pile up reduction
- Photon association

10_E

LHCb

100

^oV mismatch %

 Association of displaced tracks

- - Approximate VELO upgrade performance

200

300

400

Andreas Korn IOP Instrumentation, 25th September

20

Detector trends

Andreas Korn IOP Instrumentation, 25th September

- HVCMOS/HRCMOS
- High voltage/High resistivity
- Underlying technology Non-HEP specific
 - \rightarrow cost savings
- Integration possibilities
 - Smaller pixels
 - Monolithic devices
 - Thinner devices
- 3D sensors

See C. DaVia's Talk

21

Kick Particle ID: Kaon/pion

Detector trends: CMS HGCAL

High granularity Calorimeter using silicon sensors \rightarrow perfect particle flow!

Î

Detector trends: CMS HGCAL

High granularity Calorimeter using silicon sensors \rightarrow measure shower depth/development

Full module with double-layer PCB readout

Gold plated kapton

24

L1:5.1X₀ L2:8.5X₀ L3:11.9X₀ L4:14.7X₀ L5:17.2X₀ L6:18.7X₀ L7:21.1X₀ L8:27.07X₀ CuW baseplate

Wirebond protector Readout Chip Shielding Air gap Readout chips 1st PCB Printed circuit board wire-bonded to sensor Silicon sensor Adhesive layer Senso Adhesive layer Kapton w/ Au layer for bias Adhesive layer Si Sensors Printed 2-sensor baseplate (Cu/W) Baseplate Circuit Board Cooling pipe

An An

e⁻

+ 3

Detector trends

Improve readout speed and trigger sophistication to keep more physics of interest a speed and trigger sophistication

- ATLAS & CMS track trigger
- LHCb 40 MHz readout

· 3 R

ATLAS: Trigger/DAQ upgrade

· 3 R

ATLAS: Trigger/DAQ upgrade

CMS Track Trigger

CMS Track Trigger

 Use double layers Pass Fail high transverse Stub seeding momentum Same electronics Several approaches Stub reads two sensors - Time multiplexing low transverse momentum - FPGA based Efficiency **CMS Phasell Simulation** - Associative Memory based 0.8 $L1 p^{trig} > 20 GeV$ 0.6 L1Mu (Run 1 configuration + ME1a unganged) 0.4 -- 0 $\leq |\eta| < 1.1 \ (Q \geq 4)$ $-\Box$ 1.1 \leq $|\eta| \leq$ 2.4 (Q \geq 4) L1TrkMu (Phasell: muon hits in \geq 2 stations) 0.2 $--- 0 \le |n| < 1.1$ $-\Box$ $1.1 \le |\eta| \le 2.4$ 10 15 20 25 30 35 40 45 5 Simulated muon p [GeV] Sharp muon threshold, keeps trigger rate acceptable <u>T. James</u>

Andreas Korn IOP Instrumentation, 25th September

170, 1710

CMS Track Trigger

- 2S: strip-strip
- 5cm x 90µm double strips
- Separated by 1.6/4mm

- PS: pixel-strip
- 2.5cm x 100µm short strips
- 1.5mm x 100µm pixels
- Separated by 1.6-4mm

Documentation

- A number of new documents of interest
- LHCb Upgrade II CERN-LHCC-2017-003 -http://cds.cern.ch/record/2244311
- Phase-2 CMS Upgrade Technical Proposal —http://cds.cern.ch/record/2020886/files/LHCC-P-008.pdf
- Phase-2 CMS Upgrade Scope Document -http://cds.cern.ch/record/2055167/files/LHCC-G-165.pdf
- Phase-2 CMS Upgrade of the CMS Tracker in prep
- Phase-2 ATLAS Strip TDR CERN-LHCC-2017-005
 https://cds.cern.ch/record/2257755
- Phase-2 ATLAS Scoping Document
- https://cds.cern.ch/record/2055248
- Phase-2 ATLAS Pixel TDR in preparation

Bonus Slides

ATLAS event with 200 pileup

Ŵ

ATLAS: Track Trigger

Î

m

Andreas Korn

Î

CMS

LHCb Upgrade Overview

m

Ŵ

Rep Particle ID: Kaon/pion

Representation Particle ID: Kaon/pion

High Particle ID: Kaon/pion

Physics Motivations: Higgs

- Is the observed particle really THE Higgs?
 - Couplings to Fermions/Bosons
 - Rare decays
 - Couplings to all 3 families
 - \rightarrow first hints into mass/family hierarchy ???
- Does the Higgs break EW symmetry?
 − Higgs self couplings → Higgs potential
 - WW-scattering

Physics Motivation: Higgs couplings

Physics Motivation: HH

Î

Physics Motivations: Dark Matter

- Don't know what makes up most of the Universe
- LHC searches can provide complimentary information

HL-LHC Schedule 2016

