
V Tsulaia, LBNL

Condition Data Access in AthenaMT AthenaMT Developer Workshop  
CERN, Sep 18-22, 2017



Contents

• Core Infrastructure
• Migration of the Client Code
• Handling Alignments in AthenaMT



Serial Processing with Conditions

❖ Within given event, all framework elements process 
data from the same IOV

❖ Condition clients are blind to the IOV, retrieve data 
from the Detector Store

❖ Data retrieval from the Condition DB is a 
responsibility of IOVDbSvc

❖ At the start of every event (BeginEvent):
❖ IOVSvc checks the validity of all condition objects
❖ If some object is no longer valid, it is overwritten in the 

store with a new version fetched from the database
❖ For all updated objects IOVSvc triggers callback functions

3



Multi-Cache Condition Store for AthenaMT

❖ Single multi-cache Store for Condition Data: Condition Store 

❖ Each store element is a Container that holds multiple instances of Condition Data Objects 
of single type, one per IOV: Condition Container

❖ Client accesses the data via smart handles, which point to the appropriate entry in the 
Condition Container for a given event: Condition Handle
❖ From the client’s perspective, these objects look like any other object in the Event Store (keyed with an 

unique identifier)
❖ Client Algorithms declare a data dependency on the condition data object

❖ Updating functions are scheduled by the framework
❖ IOVSvc callback functions are migrated into specialized algorithms: Condition Algorithm
❖ These Algorithms are scheduled only when they enter new IOV

4



Multi-Cache Condition Store for AthenaMT



Condition Handles

❖ Read Condition Handle
❖ Used for read-only access 

to condition objects in the 
Condition Store

❖ Write Condition Handle
❖ Used by Condition 

Algorithms for creating 
new entries of Condition 
Objects inside Condition 
Containers



Functionality

❖ During initialize(), Condition Algorithms register their Write Condition Handles with the 
Condition Service

❖ At the start of each event the Scheduler will:
❖ Query Condition Service to determine which CondOBjID-s are valid/invalid
❖ Query the Execution Flow Graph to find producer algorithms for these objects
❖ If any object produced by Condition Algorithm is not valid, schedule the Algorithm to execute, 

otherwise mark it as already executed

❖ Only those Condition Algorithms that need to produce new data for given event will 
execute

7



CondInputLoader Algorithm

❖ CondInputLoader plays a special role in AthenaMT
❖ It triggers the retrieval of Raw Condition Objects from either IOVDbSvc cache or from CondDB
❖ It stores Raw Condition Objects into Condition Store using Write Condition Handles …
❖ … and by this way downstream clients can access them via Read Condition Handles

❖ All Condition Objects (COOL folders) need to be declared to CondInputLoader at the 
configuration step

❖ For doing this use an updated interface to the conddb object in python. Example:
conddb.addFolder("CALO","/CALO/HadCalibration2/CaloEMFrac", className=“CaloLocalHadCoeff")

8



Migration of Condition Clients
For more details - offline reading, code examples - see

TWiki Documentation 

9

https://twiki.cern.ch/twiki/bin/view/AtlasComputing/MultiThreadingConditionsAccess


Core Components

❖ Core components of the Condition Access infrastructure were enabled in RecExCommon 
back in March:
❖ CondSvc
❖ ConditionStore
❖ Condition Sequencer AthCondSeq. For more details about sequencers see the presentation by Charles 

on Monday.
❖ CondInputLoader is added to AthCondSeq inside RecExCommon
❖ Users are expected to add their Condition Algorithms to AthCondSeq by themselves

10



Trivial Examples

❖ It is relatively simple to migrate those Condition Clients which don’t produce Derived 
Condition objects:
❖ The client registers a data handle on the condition object, or …
❖ … the client registers callback on the condition object, but inside the callback it only retrieves the object 

from the Detector Store and does nothing else

❖ Migration strategy for such clients
❖ Access Condition Objects via Read Condition Handles
❖ Configure CondInputLoader to read required data from Condition DB

❖ Add COOL folder(s) to CondInputLoader’s list

11



Complex Examples

❖ Some Condition Clients do produce Derived Condition Data

❖ Derived Condition Data can be represented as
❖ A well defined object, which is updated in the Detector Store at the end of the callback function
❖ A well defined object, which is kept by the Client as private data member and which is updated inside 

the callback function
❖ A number (one or many) of private data members (either basic C++ types or user-defined types) of the 

client, which are updated inside the callback function

❖ Better yet: some clients (tools) may have local cache which gets updated outside of the 
callback
❖ A flag to trigger the cache update is set within the callback

12



Complex Examples (contd.)

❖ Strategy for the migration
❖ (If necessary) Define new class for the Derived Condition Object
❖ Migrate the existing callback function into a new Condition Algorithm

❖ Will use Read Condition Handle for Raw Condition Objects and Write Condition Handle for writing Derived 
Condition Object into Condition Store

❖ Access Derived Condition Objects via Read Condition Handles in downstream clients
❖ Configure CondInputLoader to read required data from Condition DB

13



Clients migrated so far
❖ List of classes which have references to ReadCondHandle and WriteCondHandle:

Calorimeter/CaloUtils/CaloLCClassificationTool
Calorimeter/CaloUtils/CaloLCOutOfClusterTool 
InnerDetector/InDetCalibAlgs/PixelCalibAlgs/PixelCalibCondAlg
InnerDetector/InDetConditions/PixelConditionsTools/PixelRecoDbTool
InnerDetector/InDetConditions/SCT_ConditionsServices/SCT_MonitorConditionsCondAlg
InnerDetector/InDetConditions/SCT_ConditionsServices/SCT_MonitorConditionsSvc
InnerDetector/InDetConditions/SCT_ConditionsServices/SCT_TdaqEnabledCondAlg
InnerDetector/InDetConditions/SCT_ConditionsServices/SCT_TdaqEnabledSvc
LArCalorimeter/LArBadChannelTool/LArBadChannel2Ascii
LArCalorimeter/LArBadChannelTool/LArBadChannelCondAlg
LArCalorimeter/LArBadChannelTool/LArBadFeb2Ascii
LArCalorimeter/LArBadChannelTool/LArBadFebCondAlg
LArCalorimeter/LArRecUtils/LArADC2MeVCondAlg
LArCalorimeter/LArRecUtils/LArFlatConditionsAlg
LArCalorimeter/LArRecUtils/LArHVScaleRetriever
LArCalorimeter/LArRecUtils/LArOnOffMappingAlg

❖ Tests and examples:
Control/AthenaBaseComps/test/propertyHandling_test.cxx
Control/AthenaExamples/AthExHive
Control/DataModelTest/DataModelTestDataCommon

14



Alignments in AthenaMT



Static GeoModel Tree
❖ Physical Volume

❖ Basic building block of the tree

❖ Full Physical Volume
❖ The one which will be queried by the clients for its global 

position
❖ Computes and caches its global position on first query

❖ Transform
❖ Cannot be altered after construction

❖ Alignable Transform
❖ Can be altered multiple times. Set Delta/Clear Delta
❖ Caches the Delta

PV

PV

PV

FPVTF

TF

ATF

PVTF

ATF FPV

Transform Physical  
Volume

Alignable  
Transform

Full  
Physical  
Volume



Applying Alignment Corrections

❖ Alignment Corrections are stored in the 
Conditions Database in a form of Delta 
Transforms
❖ Delta in local (wrt the parent volume) coordinate 

system

❖ Alignment data is read in Callbacks and is 
applied to the AlignableTransforms using 
setDelta() functions

❖ An AlignableTransform caches its Delta in a 
private data member

PV

PV

PV

FPVTF

TF

ATF

PVTF

ATF FPV

Transform Physical  
Volume

Alignable  
Transform

Full  
Physical  
Volume

D

D

Delta  
Transform



Caching Absolute Positions of Full Physical Volumes

❖ When a Client queries a Full Physical Volume 
for its Absolute Position (i.e. position in the 
global coordinate frame) …

❖ … the FPV computes its Absolute Position and 
caches it in a private data member

PV

PV

PV

FPVTF

TF

ATF

PVTF

ATF FPV

Transform Physical  
Volume

Alignable  
Transform

Full  
Physical  
Volume

D

D

Delta  
Transform

C

C

Cached 
Absolute  

Transform



Updating Alignments

❖ When alignments change during the job …

❖ … the callback overwrites the existing Deltas 
with new values read from the DB

❖ At the same time the cached Absolute 
Positions of FPV-s are cleared

PV

PV

PV

FPVTF

TF

ATF

PVTF

ATF FPV

Transform Physical  
Volume

Alignable  
Transform

Full  
Physical  
Volume

D

D

Delta  
Transform

C

Cached 
Absolute  

Transform



Readout Geometry

❖ GeoModel tree is not exposed to 
Detector Description clients

❖ The readout geometry layer consists 
of subsystem-specific Detector 
Elements

❖ Each Detector Element has a pointer 
to Full Physical Volume

PV

PV

PV

FPVTF

TF

ATF

PVTF

ATF FPV

Transform Physical  
Volume

Alignable  
Transform

Full  
Physical  
Volume

D

D

Delta  
Transform

C

C

Cached 
Absolute  

Transform

Detector  
Element
Detector  
Element
Detector  
Element Client



MT-friendly implementation

❖ Alignment Store is a Condition Object

❖ By making Detector Elements aware of the 
Alignment Store we can make the 
transition completely transparent to 
Detector Description Clients

PV

PV FPVTF ATF

PVTF

D

C

Detector  
Element
Detector  
Element
Detector  
Element Client

D

C

D

C

Alignment  
Store



Status and Next Steps

❖ Prototype implemented ~1 year ago
❖ Core modification: affected 10 classes out of 70+ in GeoModelKernel
❖ Client modification: tested with TRT_GeoModel only in serial jobs
❖ The prototype is not yet publicly available (not even in SVN)

❖ Next steps: give top priority to this task and start working on it ~next week
❖ Implement core changes and merge them onto master
❖ Start adiabatic migration of the clients, with a help of experts from sub-detectors

22


