V Tsulaia, LBNL

AthenaMT Developer Workshop

Condition Data Access in AthenaM'| CERN, Sep 18-22, 2017

Contents

Core Infrastructure
Migration of the Client Code
Handling Alignments in AthenaMT

Serial Processing with Conditions

* Within given event, all framework elements process
data from the same IOV

+ Condition clients are blind to the IOV, retrieve data

from the Detector Store

* Data retrieval from the Condition DB is a

responsibility of IOVDbSvc

“ At the start of every event (BeginEvent):
* IOVSvc checks the validity of all condition objects

* If some object is no longer valid, it is overwritten in the
store with a new version fetched from the database

* For all updated objects IOVSvc triggers callback functions

3

BeginEvent
‘Event 1\

[A].g A% /ConditionStore
—cl

[Alg_B = C c3)
Y _ 4
[Alg C

Mulu-Cache Condition Store for AthenaM'T

» Single multi-cache Store for Condition Data: Condition Store

» Each store element is a Container that holds multiple instances of Condition Data Objects
of single type, one per IOV: Condition Container

» Client accesses the data via smart handles, which point to the appropriate entry in the
Condition Container for a given event: Condition Handle

* From the client’s perspective, these objects look like any other object in the Event Store (keyed with an
unique identifier)

Client Algorithms declare a data dependency on the condition data object

» Updating functions are scheduled by the framework
IOVSvc callback functions are migrated into specialized algorithms: Condition Algorithm

* These Algorithms are scheduled only when they enter new IOV

4

Mulu-Cache Condition Store for AthenaM'T

--

.\ Eend] |
i (J O\% N | f— b
: N BE l Wi
J| |8 : a:
:) " EE
i i : o
5 : i N
i i h E;

Conditon Handles

* Read Condition Handle

Alg A
* Used for read-only access oot a, b

to condition objects in the ||EventStores |
Condition Store 4 [C?nr:\dAlg_x] regHandle(x) -
I‘i '," “. Out: x J

C <]

* Write Condition Handle L ,
E : ConditionStore

“ Used by Condition X | r

Algorithms for creating

new entries of Condition
Obijects inside Condition

Containers [Alg B] { Al C J

In: a In: b, x

Functonality

* During initialize(), Condition Algorithms register their Write Condition Handles with the
Condition Service

» At the start of each event the Scheduler will:

* Query Condition Service to determine which CondOBjID-s are valid /invalid
* Query the Execution Flow Graph to find producer algorithms for these objects

» If any object produced by Condition Algorithm is not valid, schedule the Algorithm to execute,
otherwise mark it as already executed

* Only those Condition Algorithms that need to produce new data for given event will
execute

CondInputloader Algorithm

* CondInputLoader plays a special role in AthenaMT
It triggers the retrieval of Raw Condition Objects from either IOVDbSvc cache or from CondDB
» It stores Raw Condition Objects into Condition Store using Write Condition Handles ...

... and by this way downstream clients can access them via Read Condition Handles

* All Condition Objects (COOL folders) need to be declared to CondInputLoader at the
configuration step

* For doing this use an updated interface to the conddb object in python. Example:
conddb.addFolder ("CALO","/CALO/HadCalibration2/CaloEMFrac", className=“CaloLocalHadCoeff")

Migration of Condition Clients

For more details - offline reading, code examples - see
TWiki Documentation

https://twiki.cern.ch/twiki/bin/view/AtlasComputing/MultiThreadingConditionsAccess

Core Components

* Core components of the Condition Access infrastructure were enabled in RecExCommon
back in March:

CondSvc
ConditionStore

Condition Sequencer AthCondSeq. For more details about sequencers see the presentation by Charles
on Monday.

CondInputLoader is added to AthCondSeq inside RecExCommon
Users are expected to add their Condition Algorithms to AthCondSeq by themselves

10

Trivial Examples

» It is relatively simple to migrate those Condition Clients which don’t produce Derived
Condition objects:

* The client registers a data handle on the condition object, or ...

... the client registers callback on the condition object, but inside the callback it only retrieves the object
from the Detector Store and does nothing else

» Migration strategy for such clients

» Access Condition Objects via Read Condition Handles

Configure CondInputLoader to read required data from Condition DB
Add COOL folder(s) to CondInputLoader’s list

il

Complex Examples

» Some Condition Clients do produce Derived Condition Data

» Derived Condition Data can be represented as

* A well defined object, which is updated in the Detector Store at the end of the callback function

» A well defined object, which is kept by the Client as private data member and which is updated inside
the callback function

* A number (one or many) of private data members (either basic C++ types or user-defined types) of the
client, which are updated inside the callback function

* Better yet: some clients (tools) may have local cache which gets updated outside of the
callback

» A flag to trigger the cache update is set within the callback

(2

Complex Examples (contd.)

« Strategy for the migration

(If necessary) Define new class for the Derived Condition Object

Migrate the existing callback function into a new Condition Algorithm

Will use Read Condition Handle for Raw Condition Objects and Write Condition Handle for writing Derived
Condition Object into Condition Store

Access Derived Condition Objects via Read Condition Handles in downstream clients

Configure CondInputLoader to read required data from Condition DB

16

Clients migrated so far

+ List of classes which have references to ReadCondHandle and WriteCondHandle:

Calorimeter/CaloUtils/CaloLCClassificationTool
Calorimeter/CaloUtils/CaloLCOutOfClusterTool
InnerDetector/InDetCalibAlgs/PixelCalibAlgs/PixelCalibCondAlg
InnerDetector/InDetConditions/PixelConditionsTools/PixelRecoDbTool
InnerDetector/InDetConditions/SCT ConditionsServices/SCT MonitorConditionsCondAlg
InnerDetector/InDetConditions/SCT ConditionsServices/SCT MonitorConditionsSvc
InnerDetector/InDetConditions/SCT ConditionsServices/SCT TdagEnabledCondAlg
InnerDetector/InDetConditions/SCT ConditionsServices/SCT TdagEnabledSvc
LArCalorimeter/LArBadChannelTool/LArBadChannel2Ascii
LArCalorimeter/LArBadChannelTool/LArBadChannelCondAlg
LArCalorimeter/LArBadChannelTool/LArBadFeb2Ascii
LArCalorimeter/LArBadChannelTool/LArBadFebCondAlg
LArCalorimeter/LArRecUtils/LArADC2MeVCondAlg
LArCalorimeter/LArRecUtils/LArFlatConditionsAlg
LArCalorimeter/LArRecUtils/LArHVScaleRetriever
LArCalorimeter/LArRecUtils/LArOnOffMappingAlg

* Tests and examples:

Control/AthenaBaseComps/test/propertyHandling test.cxx
Control/AthenaExamples/AthExHive
Control/DataModelTest/DataModelTestDataCommon

14

Alignments in AthenaM'T

Static GeoModel Tree

* Physical Volume
* Basic building block of the tree

* Full Physical Volume

* The one which will be queried by the clients for its global
position

+ Computes and caches its global position on first query

“ Transform

<« (Cannot be altered after construction

* Alignable Transtform
Can be altered multiple times. Set Delta/Clear Delta

Physical Alignable ‘ + Caches the Delta
Volume Transform Physical

Transform

Transform

Physical
Volume

Applying Alignment Corrections

Alignable
Transform

Full
Physical

* olme

Delta

Transform |

* Alignment Corrections are stored in the

Conditions Database in a form of Delta
Transforms

“ Delta in local (wrt the parent volume) coordinate
system

* Alignment data is read in Callbacks and is

applied to the AlignableTransforms using
setDelta() functions

* An AlignableTransform caches its Delta in a

private data member

Caching Absolute Positions of Full Physical Volumes

* When a Client queries a Full Physical Volume
for its Absolute Position (i.e. position in the
global coordinate frame) ...

“ ... the FPV computes its Absolute Position and
caches it in a private data member

Physical Alignable Full Delta Cached

Transf ?
ranstorm Volume Transform Physical Transform Absolute |

Volume Transform |

Updating Alignments

* When alignments change during the job ...

“ ... the callback overwrites the existing Deltas
with new values read from the DB

* At the same time the cached Absolute
Positions of FPV-s are cleared

Physical Alignable Full Delta Cached
Volume Transform Physical Transform Absolute
Transform |

Transform

Volu)

Readout Geometry

Detector

Client

Element

* GeoModel tree is not exposed to
Detector Description clients

“ The readout geometry layer consists
of subsystem-specific Detector
Elements

| “ Each Detector Element has a pointer
| to Full Physical Volume

Physical Alignable Full Delta Cached
Volume Transform Physical Transform Absolute
Transform |

Transform

Volu)

MT-friendly implementation

Detector

Client

Element

* Alignment Store is a Condition Object

* By making Detector Elements aware of the
Alignment Store we can make the
transition completely transparent to

§ W VU Alignment Detector Description Clients

vvv Store

Status and Next Steps

» Prototype implemented ~1 year ago

Core modification: affected 10 classes out of 70+ in GeoModelKernel
Client modification: tested with TRT_GeoModel only in serial jobs
* The prototype is not yet publicly available (not even in SVN)

» Next steps: give top priority to this task and start working on it ~next week

Implement core changes and merge them onto master

Start adiabatic migration of the clients, with a help of experts from sub-detectors

P

