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Motivation

Gaudi has no standard condition handling infrastructure
Condition handling code historically experiment-specific

..and based on thread-hostile global detector state

We could keep fixing the experiment-specific code

We could also standardize this important feature in Gaudi
- More work in the short term, but less in the long term!



Requirements



ATLAS conditions

HLT input ~75 kHz, with L2 time budget ~40ms/event
~300 raw conditions, ~10 of which are short-lived

— Worst case: Calo noise bursts, every minute, last ~200ms
RAM storage: ConditionStore (Global store of 1oV arrays)
ConditionDB based on COOL, may change in Run 3

Requirements:

— Short loVs require keeping multiple detector states in flight

- State storage must be memory-efficient (share reused data)
— Condition |0 & compute must overlap with event processing
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LHCb conditions

Run 3: 40 MHz SW trigger, ~3k HLT nodes - ~75 ps/event
~10,000 raw conditions, usually valid for one run (~hours!)
RAM storage managed by Gaudi today, DDCond tomorrow?
ConditionDB historically used COOL, now Git-based

Consequences:

- Need very fast event scheduling (~ps) in the common case
of unchanging conditions, avoid O(N,,,,) work per event

— Condition readout must be very fast and scalable
- Must abstract away location of in-RAM condition state



Common regquirements

e GaudiHive is all about RAM consumption
— Must be able to bound amount of detector state in flight
- Must discard unused conditions (but not too eagerly)

* 10 should be a first-class citizen
- Blocking 10 in regular Algs is a Very Bad idea
— Even dedicated |0 Algs will only scale so far...

* Need an abstraction for condition derivation computations
- e.g. computing detector alignments



Design proposal



ConditionSlot

* A ConditionSlot represents storage for a full detector state

A fully filled slot has an interval of validity (loV), which is
the intersection of the loVs of its inner conditions

 How does this abstraction help us?
- Largest granularity = maximal storage backend compatibility
- Easy to bound RAM footprint (via amount of slots in flight)
- Cheap usage tracking (by reference-counting entire slots)
- Cheap condition reuse on new event (one loV check per slot)
— Can still share individual condition data blobs across slots



Slot allocation

 When a new event comes in, it is allocated a ConditionSlot
* This process may not be instantaneous:

— All available condition slots may be used up

- Related condition 10 / computation may already be ongoing
* Blocking the event loop in this case should be avoided

- We might be able to process other incoming events

* Modern* C++ approach: use an asynchronous interface

ConditionSlotFuture setupConditions( const framework::TimePoint & eventTimestamp );

* Notably used in C++ Concurrency TS, Ste|lar HPX, just::thread, boost::thread, Qt Concurrent... Also imperfectly introduced in C++11/14/17, 9
whose futures are hostile to asynchronous continuations and will thus compose poorly. The Concurrency TS aims to fix that.



Data access & dependencies

» Reentrant data handles are an awesome idea!

* They can solve so many different problems:
- Tracking which conditions are used (for storage)
- Tracking who reads/write each condition (for scheduling)
— Discriminate between multiple versions of one condition
- Efficiently access conditions (with suitable memory layout)

* So | enthusiastically designed around that concept
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Condition 10 caveats

COOL peculiarity: Condition IoV is only known a posteriori

This has unfortunate consequences on concurrency

— ConditionSlot oV is only known at the end of 10

- We don't know if two requests will have the same result
— So we should only carry out IO for one slot at a time

It's not that bad (“real” 10 is rare thanks to large caches)

It means condition 10 cannot be part of event processing
- Need IO results to decide on ConditionSlot allocation!
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Condition |0 design

* See |0 hackathon for more background discussion

* 10 should probably be implemented as an async service
- Maps system resources (e.g. network connections) well
- Abstracts 10 implementation (blocking/async, # 10 threads)
— Scales better to many conditions & 10 requests
— Composes trivially with asynchronous slot allocation

* Proposed interface:

virtual cpp_next::future<void> startConditionIO( const framework::TimePoint & eventTimestamp,
const ConditionSlotIteration & targetSlot ) = 0;
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Condition derivation

* After condition IO, some processing usually needed
- e.g. computing an aligned detector geometry

* Everyone agrees that it should look like an Algorithm

— Familiar abstraction, friendly to parallel processing

 Whether the Scheduler should handle it is debated
- Must avoid O(N,,q) work in hot event processing path

- Adds more complexity to an already complex Scheduler
(very different time scales, broken design assumptions)

- Many event scheduling features not needed for conditions

13



Conclusions
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This actually works...

* Every part of the design presented above has been
prototyped, tested and benchmarked

« Some interesting prototype performance stats*

Scheduling an event with “hot” conditions takes ~5.4 s
Reading a condition takes ~10 ns

Writing a condition takes ~0.3 pys

Scheduling condition 10 takes (12.3 + 0.3 X N_,q) US

Deriving conditions takes (1.0 + 0.1 x N, + 0.3 X N¢ongout) S

alg

No synchronization on reads, otherwise fine-grained locking
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* Tested with batches of 10k events, 10k raw conditions, on an Intel Xeon E5-1620 v3 @ 3.50GHz (4 cores + HT)


https://gitlab.cern.ch/hgraslan/conditions-prototype

..but integration is stalled

* The design is strongly based on reentrant data handles
— | think they are the right path, for so many reasons...
— ...but right now, they are not integrated in Gaudi

* Existing implementation: Athena’s VarHandleKey
- Identifies a transient store object (DataObjID + CLID)
- VarHandleKey + EventContext => ReadHandle/WriteHandle

- Problem: Previous integration attempt stalled due to
interface incompatibilities between TES and StoreGate
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Moving forward

« Some possible paths in order of decreasing preference
1. Resolve incompatibilities and integrate reentrant handles
2. Shrink the handle interface to reduce incompatibilities
3. Build a TES-specific reentrant handle design
4. Give up and just hack around non-reentrant handles

e Other issues to be resolved:
- Interface compatibility with DD4hep / DDCond
— Converge on 10 & derivation scheduling
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Questions? Comments?
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