¥ UNIVERSITE

) AIDA PS5

N
[8

Jﬁ..’-'-'-"‘-«\-..

)
S
MW

Common condition handling

Hadrien Grasland
LAL — Orsay

- This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

Motivation

Gaudi has no standard condition handling infrastructure
Condition handling code historically experiment-specific

..and based on thread-hostile global detector state

We could keep fixing the experiment-specific code

We could also standardize this important feature in Gaudi
- More work in the short term, but less in the long term!

Requirements

ATLAS conditions

HLT input ~75 kHz, with L2 time budget ~40ms/event
~300 raw conditions, ~10 of which are short-lived

— Worst case: Calo noise bursts, every minute, last ~200ms
RAM storage: ConditionStore (Global store of 1oV arrays)
ConditionDB based on COOL, may change in Run 3

Requirements:

— Short loVs require keeping multiple detector states in flight

- State storage must be memory-efficient (share reused data)
— Condition |0 & compute must overlap with event processing

4

LHCb conditions

Run 3: 40 MHz SW trigger, ~3k HLT nodes - ~75 ps/event
~10,000 raw conditions, usually valid for one run (~hours!)
RAM storage managed by Gaudi today, DDCond tomorrow?
ConditionDB historically used COOL, now Git-based

Consequences:

- Need very fast event scheduling (~ps) in the common case
of unchanging conditions, avoid O(N,,,,) work per event

— Condition readout must be very fast and scalable
- Must abstract away location of in-RAM condition state

Common regquirements

e GaudiHive is all about RAM consumption
— Must be able to bound amount of detector state in flight
- Must discard unused conditions (but not too eagerly)

* 10 should be a first-class citizen
- Blocking 10 in regular Algs is a Very Bad idea
— Even dedicated |0 Algs will only scale so far...

* Need an abstraction for condition derivation computations
- e.g. computing detector alignments

Design proposal

ConditionSlot

* A ConditionSlot represents storage for a full detector state

A fully filled slot has an interval of validity (loV), which is
the intersection of the loVs of its inner conditions

 How does this abstraction help us?
- Largest granularity = maximal storage backend compatibility
- Easy to bound RAM footprint (via amount of slots in flight)
- Cheap usage tracking (by reference-counting entire slots)
- Cheap condition reuse on new event (one loV check per slot)
— Can still share individual condition data blobs across slots

Slot allocation

 When a new event comes in, it is allocated a ConditionSlot
* This process may not be instantaneous:

— All available condition slots may be used up

- Related condition 10 / computation may already be ongoing
* Blocking the event loop in this case should be avoided

- We might be able to process other incoming events

* Modern* C++ approach: use an asynchronous interface

ConditionSlotFuture setupConditions(const framework::TimePoint & eventTimestamp);

* Notably used in C++ Concurrency TS, Ste|lar HPX, just::thread, boost::thread, Qt Concurrent... Also imperfectly introduced in C++11/14/17, 9
whose futures are hostile to asynchronous continuations and will thus compose poorly. The Concurrency TS aims to fix that.

Data access & dependencies

» Reentrant data handles are an awesome idea!

* They can solve so many different problems:
- Tracking which conditions are used (for storage)
- Tracking who reads/write each condition (for scheduling)
— Discriminate between multiple versions of one condition
- Efficiently access conditions (with suitable memory layout)

* So | enthusiastically designed around that concept

10

Condition 10 caveats

COOL peculiarity: Condition IoV is only known a posteriori

This has unfortunate consequences on concurrency

— ConditionSlot oV is only known at the end of 10

- We don't know if two requests will have the same result
— So we should only carry out IO for one slot at a time

It's not that bad (“real” 10 is rare thanks to large caches)

It means condition 10 cannot be part of event processing
- Need IO results to decide on ConditionSlot allocation!

11

Condition |0 design

* See |0 hackathon for more background discussion

* 10 should probably be implemented as an async service
- Maps system resources (e.g. network connections) well
- Abstracts 10 implementation (blocking/async, # 10 threads)
— Scales better to many conditions & 10 requests
— Composes trivially with asynchronous slot allocation

* Proposed interface:

virtual cpp_next::future<void> startConditionIO(const framework::TimePoint & eventTimestamp,
const ConditionSlotIteration & targetSlot) = 0;

12

Condition derivation

* After condition IO, some processing usually needed
- e.g. computing an aligned detector geometry

* Everyone agrees that it should look like an Algorithm

— Familiar abstraction, friendly to parallel processing

 Whether the Scheduler should handle it is debated
- Must avoid O(N,,q) work in hot event processing path

- Adds more complexity to an already complex Scheduler
(very different time scales, broken design assumptions)

- Many event scheduling features not needed for conditions

13

Conclusions

14

This actually works...

* Every part of the design presented above has been
prototyped, tested and benchmarked

« Some interesting prototype performance stats*

Scheduling an event with “hot” conditions takes ~5.4 s
Reading a condition takes ~10 ns

Writing a condition takes ~0.3 pys

Scheduling condition 10 takes (12.3 + 0.3 X N_,q) US

Deriving conditions takes (1.0 + 0.1 x N, + 0.3 X N¢ongout) S

alg

No synchronization on reads, otherwise fine-grained locking
15

* Tested with batches of 10k events, 10k raw conditions, on an Intel Xeon E5-1620 v3 @ 3.50GHz (4 cores + HT)

https://gitlab.cern.ch/hgraslan/conditions-prototype

..but integration is stalled

* The design is strongly based on reentrant data handles
— | think they are the right path, for so many reasons...
— ...but right now, they are not integrated in Gaudi

* Existing implementation: Athena’s VarHandleKey
- Identifies a transient store object (DataObjID + CLID)
- VarHandleKey + EventContext => ReadHandle/WriteHandle

- Problem: Previous integration attempt stalled due to
interface incompatibilities between TES and StoreGate

16

Moving forward

« Some possible paths in order of decreasing preference
1. Resolve incompatibilities and integrate reentrant handles
2. Shrink the handle interface to reduce incompatibilities
3. Build a TES-specific reentrant handle design
4. Give up and just hack around non-reentrant handles

e Other issues to be resolved:
- Interface compatibility with DD4hep / DDCond
— Converge on 10 & derivation scheduling

17

Questions? Comments?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

