
Common condition handling
Hadrien Grasland

LAL – Orsay

2

Motivation

● Gaudi has no standard condition handling infrastructure
● Condition handling code historically experiment-specifc
● …and based on thread-hostile global detector state

● We could keep fxing the experiment-specifc code
● We could also standardize this important feature in Gaudi

– More work in the short term, but less in the long term!

3

Requirements

4

ATLAS conditions

● HLT input ~75 kHz, with L2 time budget ~40ms/event
● ~300 raw conditions, ~10 of which are short-lived

– Worst case: Calo noise bursts, every minute, last ~200ms
● RAM storage: ConditionStore (Global store of IoV arrays)
● ConditionDB based on COOL, may change in Run 3

● Requirements:
– Short IoVs require keeping multiple detector states in fight

– State storage must be memory-efcient (share reused data)

– Condition IO & compute must overlap with event processing

5

LHCb conditions

● Run 3: 40 MHz SW trigger, ~3k HLT nodes → ~75 µs/event
● ~10,000 raw conditions, usually valid for one run (~hours!)
● RAM storage managed by Gaudi today, DDCond tomorrow?
● ConditionDB historically used COOL, now Git-based

● Consequences:
– Need very fast event scheduling (~µs) in the common case

of unchanging conditions, avoid O(Ncond) work per event

– Condition readout must be very fast and scalable

– Must abstract away location of in-RAM condition state

6

Common requirements

● GaudiHive is all about RAM consumption
– Must be able to bound amount of detector state in fight

– Must discard unused conditions (but not too eagerly)

● IO should be a frst-class citizen
– Blocking IO in regular Algs is a Very Bad idea

– Even dedicated IO Algs will only scale so far…

● Need an abstraction for condition derivation computations
– e.g. computing detector alignments

7

Design proposal

8

ConditionSlot

● A ConditionSlot represents storage for a full detector state
● A fully flled slot has an interval of validity (IoV), which is

the intersection of the IoVs of its inner conditions

● How does this abstraction help us?
– Largest granularity = maximal storage backend compatibility

– Easy to bound RAM footprint (via amount of slots in fight)

– Cheap usage tracking (by reference-counting entire slots)

– Cheap condition reuse on new event (one IoV check per slot)

– Can still share individual condition data blobs across slots

9

Slot allocation

● When a new event comes in, it is allocated a ConditionSlot
● This process may not be instantaneous:

– All available condition slots may be used up

– Related condition IO / computation may already be ongoing
● Blocking the event loop in this case should be avoided

– We might be able to process other incoming events

● Modern* C++ approach: use an asynchronous interface

* Notably used in C++ Concurrency TS, Ste||ar HPX, just::thread, boost::thread, Qt Concurrent… Also imperfectly introduced in C++11/14/17,
whose futures are hostile to asynchronous continuations and will thus compose poorly. The Concurrency TS aims to fx that.

10

Data access & dependencies

● Reentrant data handles are an awesome idea!

● They can solve so many different problems:
– Tracking which conditions are used (for storage)

– Tracking who reads/write each condition (for scheduling)

– Discriminate between multiple versions of one condition

– Efciently access conditions (with suitable memory layout)

● So I enthusiastically designed around that concept

11

Condition IO caveats

● COOL peculiarity: Condition IoV is only known a posteriori
● This has unfortunate consequences on concurrency

– ConditionSlot IoV is only known at the end of IO

– We don’t know if two requests will have the same result

– So we should only carry out IO for one slot at a time

● It’s not that bad (“real” IO is rare thanks to large caches)
● It means condition IO cannot be part of event processing

– Need IO results to decide on ConditionSlot allocation!

12

Condition IO design

● See IO hackathon for more background discussion

● IO should probably be implemented as an async service
– Maps system resources (e.g. network connections) well

– Abstracts IO implementation (blocking/async, # IO threads)

– Scales better to many conditions & IO requests

– Composes trivially with asynchronous slot allocation

● Proposed interface:

13

Condition derivation

● After condition IO, some processing usually needed
– e.g. computing an aligned detector geometry

● Everyone agrees that it should look like an Algorithm
– Familiar abstraction, friendly to parallel processing

● Whether the Scheduler should handle it is debated
– Must avoid O(Ncond) work in hot event processing path

– Adds more complexity to an already complex Scheduler
(very different time scales, broken design assumptions)

– Many event scheduling features not needed for conditions

14

Conclusions

15

This actually works…

● Every part of the design presented above has been
prototyped, tested and benchmarked
– https://gitlab.cern.ch/hgraslan/conditions-prototype

● Some interesting prototype performance stats*
– Scheduling an event with “hot” conditions takes ~5.4 µs

– Reading a condition takes ~10 ns

– Writing a condition takes ~0.3 µs

– Scheduling condition IO takes (12.3 + 0.3 x Ncond) µs

– Deriving conditions takes (1.0 + 0.1 x Nalg + 0.3 x Ncond,out) μs

– No synchronization on reads, otherwise fne-grained locking

* Tested with batches of 10k events, 10k raw conditions, on an Intel Xeon E5-1620 v3 @ 3.50GHz (4 cores + HT)

https://gitlab.cern.ch/hgraslan/conditions-prototype

16

…but integration is stalled

● The design is strongly based on reentrant data handles
– I think they are the right path, for so many reasons…

– …but right now, they are not integrated in Gaudi

● Existing implementation: Athena’s VarHandleKey
– Identifes a transient store object (DataObjID + CLID)

– VarHandleKey + EventContext => ReadHandle/WriteHandle

– Problem: Previous integration attempt stalled due to
interface incompatibilities between TES and StoreGate

17

Moving forward

● Some possible paths in order of decreasing preference

1. Resolve incompatibilities and integrate reentrant handles

2. Shrink the handle interface to reduce incompatibilities

3. Build a TES-specifc reentrant handle design

4. Give up and just hack around non-reentrant handles

● Other issues to be resolved:
– Interface compatibility with DD4hep / DDCond

– Converge on IO & derivation scheduling

18

Questions? Comments?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

