
Potential for greater commonality in our 

approaches to I/O?

David Malon

malon@anl.gov

Gaudi Workshop

26 September 2017, CERN

mailto:malon@anl.gov


Background

 It seems that I/O components and I/O design have not been central to discussions 
and action items in recent Gaudi workshops

– Though there have been some discussions about thread scheduling for I/O-oriented and 
other “blocking” tasks 

 Athena inherited from Gaudi its essential I/O infrastructure design—event 
selectors, outstreams, persistency services, conversion services, and converters

– But implementations and extensions diverged early

 Lots of independent development since (shared readers and writers for 
multiprocessing, support for metadata reading/writing, …) 

 Would it be worthwhile to explore joint I/O infrastructure evolution and the 
potential for greater commonality in our I/O components and strategies, or is this 
hopeless?

 It would be nice if progress in efficient multithreading for I/O and in leveraging 
developments in ROOT I/O (and possibly other advances) could be shared more 
directly among experiments.  This might be easier if we shared more of our I/O 
components.  

David Malon, 26 September 
2017

Gaudi Workshop

2



Prospects for a shared ROOT conversion service?

 Peter van Gemmeren has explored what it would take to use the Gaudi 
RootCnvSvc from Athena

 This work is in preliminary stages, but with a few changes to the Gaudi code and 
to Athena configuration Peter has succeeded in writing simple objects from 
Athena via the Gaudi RootCnvSvc

– Not yet xAOD

 Some recent slides from Peter illustrating the changes are attached to the agenda

 My own high-level summary is this:

 The primary obstacles to a shared ROOT conversion service arise from LHCb-
oriented assumptions made by the current Gaudi RootCnvSvc

1. Regarding the transient store, and 

2. Regarding transient object naming and the mapping of transient names to persistent 
data organization 

 Daya Bay too needed to develop its own ROOT conversion service, largely because 
of transient store issues and assumptions 

 Differences among ATLAS, LHCb, and Daya Bay transient event stores are distinctly 
non-trivial, but perhaps not all of them need to be resolved in order to share at 
least some I/O services

David Malon, 26 September 
2017

Gaudi Workshop

3



LHCb-isms in Gaudi RootCnvSvc

 Gaudi RootCnvSvc expects everything to be a DataObject

 ATLAS can work around this by returning a DataObject* without “being” a 
DataObject

– Certainly doable from an Athena DataBucket

– Straightforward to change RootCnvSvc so that this is good enough, in a way that should 
work for both ATLAS and LHCb (cf. Peter’s code) 

– Is there a willingness to do this?  

– Is it worth doing?  

 Is this dependence upon DataObject really required in the long run? 

– Is LHCb reliance on DataObject inheritance diminishing (cf. discussions of 
AnyDataHandle), or is the AnyDataHandle construct mainly intended to make certain 
functional programming interfaces a bit easier?  

David Malon, 26 September 
2017

Gaudi Workshop

4



Other LHCb-isms in Gaudi RootCnvSvc

 Other LHCb-isms appear in assumptions about object names

 Conversion service assumes a hierarchical naming scheme, searching for “/” and 
so on

 Conversion service decides persistent data organization (branches, etc.) and 
naming based upon the transient object name in a way that is experiment-specific

 Related things done in implementation if not in design (e.g., packing transient 
object names into persistent references, …) 

David Malon, 26 September 
2017

Gaudi Workshop

5



Worth doing?  

 Is it worthwhile to try to provide a shared ROOT conversion service?

– No immediate improvement in functionality or performance, but perhaps a starting 
point for jointly leveraging each other’s developments in I/O multithreading and in 
exploiting emerging improvements in ROOT I/O

– and ideally a slightly reduced code maintenance load 

– Probably no running experiment would want to change how it maps its transient event 
data model to ROOT storage at this point for the sake of a common approach to 
persistence

• though it is perhaps premature to worry about whether this should be necessary

 Peter is has provided some diffs, and is willing to discuss these and supply 
corresponding merge requests if there is interest in adapting the current Gaudi 
RootCnvSvc to support simple object writing from Athena 

 … and/or one could imagine a broader rethinking a common ROOT conversion 
service, one that is not a patch to one experiment’s conversion service to support 
another 

– This may be called for in any case if we hope to support more than ATLAS and LHCb

 Note too Attila’s and Martin’s work presented yesterday—in which there is no 
need for a conversion service at all 

David Malon, 26 September 
2017

Gaudi Workshop

6



Other components to explore?  

 If there is a shared interest, there are other “obvious” candidates for commonality

– FileCatalog infrastructure, for example

– ATLAS uses something close to the original POOL file catalog infrastructure, from which 
LHCb diverged somewhat some time ago 

– Conceptually, though, perhaps not so different, and perhaps not so different in their 
requirements 

 Is there in any case an interest in looking at the I/O-related components more 
generally and more systematically to explore potential commonalities? 

David Malon, 26 September 
2017

Gaudi Workshop

7



A related topic for discussion:  shared approach to 

serialization?

 Many use cases for object serialization—serialization is not just a precursor to 
writing to disk

 ATLAS has for years serialized high-level trigger results—objects in the Athena 
transient store--into a buffer stored with other (readout) buffers in its raw data 
files 

 Object  (and full-event) serialization are also useful and used for sharing data 
among processes

– Which may in principle be local or remote 

– And ATLAS has an increasing number of use cases for this, with its distributed event 
service and event streaming service infrastructure 

 Could we imagine a shared Gaudi design and implementation for this, or should 
this capability remain experiment-specific?  

– One possibility is to (re)use the conversion service and converter infrastructure for 
serialization (a streaming conversion service), factorizing it from writing, but there are 
others 

David Malon, 26 September 
2017

Gaudi Workshop

8



An almost-unrelated thought

 We have adopted different approaches to in-file metadata and metadata 
handling.

 This is in flux in ATLAS; I’m not sure what is happening in LHCb

– I remember hearing about LHCb File Summary Records at some point, though perhaps 
those are ancient history by now.  

 Is there any interest in Gaudi-wide discussions of framework support for 
metadata, and possibly for in-file metadata handling?  

David Malon, 26 September 
2017

Gaudi Workshop

9


