
StatusCode Extension
Frank Winklmeier

University of Oregon

Gaudi Workshop 2017
26 Sept 2017

Frank Winklmeier • StatusCode Extension • Gaudi Workshop 2017 • 26 Sep 2017 2

StatusCode: Status Quo

StatusCode can store an arbitrary number as its code

 But any code >2 results in isFailure()==True
 Hence at the moment one cannot return additional information in case of SUCCESS

Use cases
 Flag “small problems” during event processing that should not result in an abort

 Event reconstruction was aborted prematurely due to timeout
 Event has some missing data fragments

 In the ATLAS HLT this is currently done via a dedicated HLT::ErrorCode and custom base classes
 But we want to get rid of all this special code in athenaMT

Advantage of storing this in StatusCode
 Algorithm StatusCode is already stored in AlgExecStateSvc

 Can be queried at the end of processing and appropriate actions taken

 If not stored in StatusCode would have to re-invent a very similar service

enum { FAILURE=0, SUCCESS=1, RECOVERABLE=2 };
StatusCode(unsigned long code);

Frank Winklmeier • StatusCode Extension • Gaudi Workshop 2017 • 26 Sep 2017 3

Prototype I

Split `code` into framework and user-specific bits
 see MR Gaudi!380
 isSuccess(), isFailure(), etc. only act on the framework-specific bits

Advantage
 Minimal invasive change
 Does not increase sizeof(StatusCode)
 Same performance as today

Problem
 Could break existing code

 e.g. StatusCode(513) currently is considered FAILURE
 By only considering e.g. the lowest 8 bits [513 = 0b1000000001] this becomes SUCCESS

 Would be better if user could decide on the mapping of SUCCESS/FAILURE for individual codes

Fix for above problems
 Could add a completely separate “user-code” that is never considered in isXYZ() methods

https://gitlab.cern.ch/gaudi/Gaudi/merge_requests/380

Frank Winklmeier • StatusCode Extension • Gaudi Workshop 2017 • 26 Sep 2017 4

Prototype II

Leverage std::error_code / std::error_condition
 Allows type-safe custom mapping of “error codes” to “error conditions”

 Thanks to Gerhard for the pointer
 https://akrzemi1.wordpress.com/2017/08/12/your-own-error-condition/

 Each error_code belongs to a “category” (domain)
 Mapping of codes to conditions is done for each category
 New error codes and categories can be added by clients

Implementation
 https://gitlab.cern.ch/fwinkl/sandbox/tree/master/StatusCode
 change unsigned long code → std::error_code in StatusCode
 Mostly backwards-compatible with existing code

 Mapping of integer values has to be changed to follow std convention: 0 = SUCCESS
 But removed operator long() → will break code that relies on this implicit cast → should be trivial to fix

Cost
 sizeof(StatusCode) from 32 to 40 bytes (on x86_64)
 For most cases, one extra function call for each StatusCode comparison

std::error_code
SUCCESS
FAILURE
RECOVERABLE
…

std::error_condition
SUCCESS
FAILURE
RECOVERABLE

isSuccess(), etc. tests
against these conditions

extensible by user

mapping defined by user
for new error categories
(default Gaudi mapping 1:1)

https://akrzemi1.wordpress.com/2017/08/12/your-own-error-condition/
https://gitlab.cern.ch/fwinkl/sandbox/tree/master/StatusCode

Frank Winklmeier • StatusCode Extension • Gaudi Workshop 2017 • 26 Sep 2017 5

Example
 Relevant code from https://gitlab.cern.ch/fwinkl/sandbox/tree/master/StatusCode

enum class MyErr {
 SUCCESS = 0,
 FAILURE = 1,
 RECOVERABLE = 2,
 NO_LVL1_ITEMS = 10,
 MISSING_FEATURE = 11
};

struct MyErrCategory : std::error_category
{
 virtual bool equivalent(int code, const std::error_condition& cond) const {
 // here define mapping of error_code to error_condition
 }
};

// […] some template magic to register above enum with category (see MyErr.h)

{ // no change of current behavior
 StatusCode sc(StatusCode::SUCCESS);
 assert(sc.isSuccess())
}
{ // custom error codes in default Gaudi category behave as today
 StatusCode sc(42);
 assert(sc.isFailure());
}
{ // custom error codes in user category behave as defined by user
 StatusCode sc(MyErr::MISSING_FEATURE);
 assert(sc.isSuccess());
}

https://gitlab.cern.ch/fwinkl/sandbox/tree/master/StatusCode

