
StatusCode Extension
Frank Winklmeier

University of Oregon

Gaudi Workshop 2017
26 Sept 2017

Frank Winklmeier • StatusCode Extension • Gaudi Workshop 2017 • 26 Sep 2017 2

StatusCode: Status Quo

StatusCode can store an arbitrary number as its code

 But any code >2 results in isFailure()==True
 Hence at the moment one cannot return additional information in case of SUCCESS

Use cases
 Flag “small problems” during event processing that should not result in an abort

 Event reconstruction was aborted prematurely due to timeout
 Event has some missing data fragments

 In the ATLAS HLT this is currently done via a dedicated HLT::ErrorCode and custom base classes
 But we want to get rid of all this special code in athenaMT

Advantage of storing this in StatusCode
 Algorithm StatusCode is already stored in AlgExecStateSvc

 Can be queried at the end of processing and appropriate actions taken

 If not stored in StatusCode would have to re-invent a very similar service

enum { FAILURE=0, SUCCESS=1, RECOVERABLE=2 };
StatusCode(unsigned long code);

Frank Winklmeier • StatusCode Extension • Gaudi Workshop 2017 • 26 Sep 2017 3

Prototype I

Split `code` into framework and user-specific bits
 see MR Gaudi!380
 isSuccess(), isFailure(), etc. only act on the framework-specific bits

Advantage
 Minimal invasive change
 Does not increase sizeof(StatusCode)
 Same performance as today

Problem
 Could break existing code

 e.g. StatusCode(513) currently is considered FAILURE
 By only considering e.g. the lowest 8 bits [513 = 0b1000000001] this becomes SUCCESS

 Would be better if user could decide on the mapping of SUCCESS/FAILURE for individual codes

Fix for above problems
 Could add a completely separate “user-code” that is never considered in isXYZ() methods

https://gitlab.cern.ch/gaudi/Gaudi/merge_requests/380

Frank Winklmeier • StatusCode Extension • Gaudi Workshop 2017 • 26 Sep 2017 4

Prototype II

Leverage std::error_code / std::error_condition
 Allows type-safe custom mapping of “error codes” to “error conditions”

 Thanks to Gerhard for the pointer
 https://akrzemi1.wordpress.com/2017/08/12/your-own-error-condition/

 Each error_code belongs to a “category” (domain)
 Mapping of codes to conditions is done for each category
 New error codes and categories can be added by clients

Implementation
 https://gitlab.cern.ch/fwinkl/sandbox/tree/master/StatusCode
 change unsigned long code → std::error_code in StatusCode
 Mostly backwards-compatible with existing code

 Mapping of integer values has to be changed to follow std convention: 0 = SUCCESS
 But removed operator long() → will break code that relies on this implicit cast → should be trivial to fix

Cost
 sizeof(StatusCode) from 32 to 40 bytes (on x86_64)
 For most cases, one extra function call for each StatusCode comparison

std::error_code
SUCCESS
FAILURE
RECOVERABLE
…

std::error_condition
SUCCESS
FAILURE
RECOVERABLE

isSuccess(), etc. tests
against these conditions

extensible by user

mapping defined by user
for new error categories
(default Gaudi mapping 1:1)

https://akrzemi1.wordpress.com/2017/08/12/your-own-error-condition/
https://gitlab.cern.ch/fwinkl/sandbox/tree/master/StatusCode

Frank Winklmeier • StatusCode Extension • Gaudi Workshop 2017 • 26 Sep 2017 5

Example
 Relevant code from https://gitlab.cern.ch/fwinkl/sandbox/tree/master/StatusCode

enum class MyErr {
 SUCCESS = 0,
 FAILURE = 1,
 RECOVERABLE = 2,
 NO_LVL1_ITEMS = 10,
 MISSING_FEATURE = 11
};

struct MyErrCategory : std::error_category
{
 virtual bool equivalent(int code, const std::error_condition& cond) const {
 // here define mapping of error_code to error_condition
 }
};

// […] some template magic to register above enum with category (see MyErr.h)

{ // no change of current behavior
 StatusCode sc(StatusCode::SUCCESS);
 assert(sc.isSuccess())
}
{ // custom error codes in default Gaudi category behave as today
 StatusCode sc(42);
 assert(sc.isFailure());
}
{ // custom error codes in user category behave as defined by user
 StatusCode sc(MyErr::MISSING_FEATURE);
 assert(sc.isSuccess());
}

https://gitlab.cern.ch/fwinkl/sandbox/tree/master/StatusCode

