= UNIVERSITE

P 5"

L]
universite
PARIS-SACLAY

Asynchronous IO

Hadrien Grasland
LAL — Orsay

- This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.



Context

Spin-off from conditions discussion, interesting on its own

The issue in a nutshell:

- “Regular” Algorithms are executed on the TBB thread pool
— One thread per CPU core, if it blocks, that CPU goes idle

- We don't want that, so what should we do instead?

Latest proposal: Mark algorithms as 10 bound, run them on
a special thread pool, keep code otherwise unchanged

| would like to add some additional design input



Pitfalls of (blocking) 10 tasks

Most 10 resources (file descs, connections...) will lock
internally or blow up when accessed from multiple threads

Good 10 APIs do not need many threads to scale

- Modern epoll/kqueue based web servers will readily service
10~100k requests per second with a single 10 thread

Blocking threads come at a cost (RAM, context switches...)
— Must keep them in small numbers and use them efficiently
Optimal mapping of work to |0 threads is resource-specific
Piling up Scheduler complexity may bite us in the long run



Asynchronous |10

* Many high-performance IO APIs are asynchronous,
decoupling the actions of starting 10 and handling resuts

* Implementations vary in complexity and scalability:

— Blocking APl wrapper: Queue requests on a blocking thread,
get notifled via some thread synchronization mechanism

- Completion based: Run a callback once IO results are ready
- Readiness based: Event loop blocking on multiple requests

* Growing consensus around standardized interfaces:
— Future: Represents an individual ongoing 10 operation
— Stream: Optimization for repeated |0 operations



Strawman Gaudi integration

|0 resources are global state, modeled via Services

These expose 10 actions as asynchronous methods
- Simplest design: individual |0 method returns a future
— Streaming design worth exploring for repetitive 10 work

|0 threads become a Service implementation detail
— Any concrete 10 style may be used under the hood
— Multiple 10 Services may or not share a pool of 10 threads

Processing work can be scheduled on 10 completion
- Modern task schedulers like HPX support this natively



Summary

Asynchronous 10 APIs are superior to blocking 10 tasks
Asynchronous |0 interacts with computation scheduling
- So leveraging it requires explicit framework support

Synchronous APIs can be quite efficiently hidden behind
an asynchronous interface, whereas the opposite is false

Like concurrent event processing, this is the kind of basic
interface concept that is best introduced early on



	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6

