
Asynchronous IO
Hadrien Grasland

LAL – Orsay



2

Context

● Spin-off from conditions discussion, interesting on its own

● The issue in a nutshell:
– “Regular” Algorithms are executed on the TBB thread pool

– One thread per CPU core, if it blocks, that CPU goes idle

– We don’t want that, so what should we do instead?

● Latest proposal: Mark algorithms as IO bound, run them on 
a special thread pool, keep code otherwise unchanged

● I would like to add some additional design input



3

Pitfalls of (blocking) IO tasks

● Most IO resources (fle descs, connections…) will lock 
internally or blow up when accessed from multiple threads

● Good IO APIs do not need many threads to scale
– Modern epoll/kqueue based web servers will readily service 

10~100k requests per second with a single IO thread
● Blocking threads come at a cost (RAM, context switches…)

– Must keep them in small numbers and use them efciently
● Optimal mapping of work to IO threads is resource-specifc
● Piling up Scheduler complexity may bite us in the long run



4

Asynchronous IO

● Many high-performance IO APIs are asynchronous,
decoupling the actions of starting IO and handling resuts

● Implementations vary in complexity and scalability:
– Blocking API wrapper: Queue requests on a blocking thread, 

get notifed via some thread synchronization mechanism

– Completion based: Run a callback once IO results are ready

– Readiness based: Event loop blocking on multiple requests

● Growing consensus around standardized interfaces:
– Future: Represents an individual ongoing IO operation

– Stream: Optimization for repeated IO operations



5

Strawman Gaudi integration

● IO resources are global state, modeled via Services
● These expose IO actions as asynchronous methods

– Simplest design: individual IO method returns a future

– Streaming design worth exploring for repetitive IO work

● IO threads become a Service implementation detail
– Any concrete IO style may be used under the hood

– Multiple IO Services may or not share a pool of IO threads

● Processing work can be scheduled on IO completion
– Modern task schedulers like HPX support this natively



6

Summary

● Asynchronous IO APIs are superior to blocking IO tasks
● Asynchronous IO interacts with computation scheduling

– So leveraging it requires explicit framework support
● Synchronous APIs can be quite efciently hidden behind 

an asynchronous interface, whereas the opposite is false
● Like concurrent event processing, this is the kind of basic 

interface concept that is best introduced early on


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6

