Detector and Component Stress & Deformation Analysis

Ronan McGovern & Diego Perini

Summary

Layer & Bolting Analysis

Detector Section 2D analysis

3D detector analysis

Tungsten Layer Design											
Densities							<u>Sandwich</u>				
Tungsten	17600	kg/m ³					Material	Thickness			
SS	7800	kg/m ³				1	SS	3.25			
Detectors	2300	kg/m ³				2	W	6.5			
Gap	0	kg/m ³				3	SS	3.25			
								13	mm		
<u>Detectors</u>							Dual Laye	<u>r</u>			
1	Silicon	7					Material				
(Gap) 2	Vaccuum	1				1	SS	6.5			
Total		8	mm			2	W	6.5			
		2012.5	kg/m ³					13	mm		
Total Layer Density/ Compartment Density											
<u>Sandwich</u>				8628.571	kg/m ³		Dual Laye	<u>r</u>		8628.571	kg/m ³

Mises Max (MPa)

Deflection Max (µm)

Layer subjected to it's own weight

- Advantages of SS-W layer over W layer
 - Reduced costs
 - Allow a reduction of concentrated forces applied to W.
- Sandwich versus Dual layer
 - Sandwich protects Tungsten from washer forces
 - Thickness of SS in sandwich is thin difficult to bolt

Layer Analysis – Bolting Analysis

- Normal Weight 1 Plate
- Force 1275.652 N/m
- Max Mises 19 MPa

- Normal Weight 4 plates
- Force 5102.606 N/m
- Max Mises 78 MPa

Layer Analysis – Bolting Analysis

- Shear Weight 4 plates
- Force 5102.606 N/m distributed over 4 bolts
- Max Mises 256 MPa

Layer Analysis – Bolting Analysis

- Conclusions
 - From initial calculations bolting remains feasible
- However, difficulties lie within calculation of
 - Bolt thread stress
 - Note: Threads were previously used in INERMET in other detectors
 - Forces exerted upon plates by SS lattice and washers

Section Parameters			
Number of compart	18	radial	
Supports per compa	2		
Exterior Arc Length		1.01	m
Interior Arc Length		0.49	m
Diagonal Length		1.50	m
Compartment Heigh	1.41	m	
2D Area		1.05	m ²
Compartment Dept	1.00	m	
Compartment Volu	1.05	m ³	
Compartment Mass		9102.51	kg
Weight of Layers		89295.61	N/m

Simulation does not take into account the rigidity of the layers.

Section 2D analysis – Layer Density

Tungsten	Layer Desi	gn								
Densities						<u>Sandwich</u>				
Tungsten	17600	kg/m ³				Material	Thickness			
SS	7800	kg/m ³			1	SS	3.25			
Detectors	2300	kg/m ³			2	2 W	6.5			
Gap	0	kg/m ³			3	SS SS	3.25			
							13	mm		
<u>Detectors</u>						Dual Laye	<u>r</u>			
1	Silicon	7				Material				
(Gap) 2	Vaccuum	1			1	SS	6.5			
Total		8	mm		2	2 W	6.5			
		2012.5	kg/m ³				13	mm		
Total Layer Density/ Compartment Density										
<u>Sandwich</u>				8628.57	1 kg/m ³	Dual Laye	<u>r</u>		8628.571	kg/m ³

Max Deformation (mm)

Wall Thickness (mm)

Max Deformation (mm)

- Conclusions
 - Initial wall thickness approximation = 20 mm
 - Stresses in horizontal sections need to be estimated allowing for the rigidity of internal layers

3D detector analysis

3D detector analysis – Overall Model

We seek to calculate the maximum deflection

Simulation does not take into account the rigidity of the layers.

Displacement Time: 1. s 7/30/2009 11:41 AM Displacement

Components: 0., Free, Free m

3D detector analysis – Detector Lattice

We seek to calculate the maximum deflection and stress

✤Simulation does not take into account the rigidity of the layers.

Zero displacement imposed on SS lattice face.

Overall model Max Total Deformation = 2.05 mm

Detector Lattice Max Total Deformation = 1.31 mm

Max Stress = 42 MPa

3D detector analysis – Detector Lattice

- Conclusions
 - Welding or bolting the detector lattice to such a mass is very advantageous in reducing deformation and stress compared to supporting the detector at radial points.
 - "Closed section" greatly reduces stress and deformation.
 - Weight of each section is mainly supported by the iron mass rather than other sections.
 - The feasibility of having an iron mass at either end of the detector should be carefully considered.
 - Stresses fall within a reasonable range
 - Especially considering that the rigidity of the layers has been neglected
 - Deflection goes beyond 1 mm but in reality the rigidity of the layers should reduce this.
 - Boundary condition issues regarding distribution of the weight of layers on SS lattice

Further work

- Transfer of 3D detector model from Philippe Lenoir to Ansys Workbench. (Week of 3rd Aug. 09)
- Analysis of stress and deformation distributions for various support configurations of the detector lattice, including radial. (Completed by Tuesday 4th Aug. 09)