
How to easily offer your application as a
self-service template by using OpenShift

and GitLab-CI

4th Developers@CERN Forum

Alberto Rodríguez Peón IT-CDA-WF

https://myapp.cern.ch

Running a service on the cloud

Application maintenance and
server provision is simple as
only a single instance running

A single instance of your
application serving all users

All users connect through the
same well-known endpoint

Running a service on the cloud

https://myapp.cern.ch

Application maintenance and
server provision is simple as
only a single instance running

A single instance of your
application serving all users

All users connect through the
same well-known endpoint

Running a service on the cloud

https://myapp.cern.ch

Application maintenance and
server provision is simple as
only a single instance running

A single instance of your
application serving all users

Application needs to support
multi-tenancy, ACLs and
independent user configuration!

All users connect through the
same well-known endpoint

https://myapp-1.cern.ch

Running individual instances per team

https://myapp-2.cern.ch https://myapp-3.cern.ch

Individual instances solve this but maintenance, provision and configuration efforts get multiplied!

https://myapp-3.cern.ch

Application offered as a self-service template

https://myapp-3.cern.ch

Application binaries are offered from a
central catalog, allowing users to pull
them and run their private instance

New software releases and security
updates are pushed to the central
repository and propagated to users’
instances

Instance provision is
automatically provided by the
platform

Instance owners have full
privileges to configure their
private copy of the application

A real-life use case: Jenkins service @ CERN

• Jenkins is a clear example of software that works well with the self-
service model

• As admins, we want to:
• Offer a readily available and curated template that users can instantiate

without effort

• Automate provisioning of new instances

• Keep users’ instances up to date while minimizing maintenance efforts
through automated procedures

• Automate build, test and deployment of new releases

• OpenShift and GitLab-CI provide tools to achieve all this!

Packaging the application in a Docker Image

• By using Docker, we can encapsulate the Jenkins binaries in a standard
and reusable way that users can run
• Containers isolate app from host, allowing total delegation to users!

• … but only providing an image is not enough
• We still need an orchestrating platform to provide:

• Routing to the container

• Instance provisioning

• Lifecycle of the application

• Data storage

• Upgrade strategies

Using OpenShift templates

• By using OpenShift, we can use an existing platform instead of
running our orchestrating platform

• OpenShift supports adding all the missing
pieces with Templates

• Completely self-service

• Trivial for users to launch!

Keeping users’ instances up to date

• OpenShift provides two features to ensure private Jenkins instances
are up to date with new software releases and security fixes
• ImageStreams are indirections to Docker images

• ImageTriggers watch a given tag of an ImageStream and redeploy the
application whenever the tag changes

• All Jenkins instances are configured to use the stable tag of a
shared ImageStream and have an ImageTrigger for that tag

OpenShift ImageStreams at work
Jenkins image in the Docker registry

Jenkins ImageStream

openshift/jenkins:stable docker.io/_/jenkins@sha256:714c62c1f62c...

openshift/jenkins:latest docker.io/_/jenkins@sha256:a4b585874b21...

openshift/jenkins:2.73.2-1 docker.io/_/jenkins@sha256:714c62c1f62c...

docker.io/_/jenkins:latest docker.io/_/jenkins@sha256:a4b585874b21...

docker.io/_/jenkins:2.73.2-1 docker.io/_/jenkins@sha256:714c62c1f62c...

OpenShift ImageStreams at work
Jenkins image in the Docker registry

Jenkins ImageStream

openshift/jenkins:stable docker.io/_/jenkins@sha256:714c62c1f62c...

openshift/jenkins:latest docker.io/_/jenkins@sha256:a4b585874b21...

openshift/jenkins:2.73.2-1 docker.io/_/jenkins@sha256:714c62c1f62c...

docker.io/_/jenkins:latest docker.io/_/jenkins@sha256:a4b585874b21...

docker.io/_/jenkins:2.73.2-1 docker.io/_/jenkins@sha256:714c62c1f62c...

docker.io/_/jenkins:2.73.2-2 docker.io/_/jenkins@sha256:60ea1a543548...

OpenShift ImageStreams at work
Jenkins image in the Docker registry

Jenkins ImageStream

openshift/jenkins:stable docker.io/_/jenkins@sha256:714c62c1f62c...

openshift/jenkins:latest docker.io/_/jenkins@sha256:a4b585874b21...

openshift/jenkins:2.73.2-1 docker.io/_/jenkins@sha256:714c62c1f62c...

openshift/jenkins:2.73.2-2 docker.io/_/jenkins@sha256:60ea1a543548...

docker.io/_/jenkins:latest docker.io/_/jenkins@sha256:a4b585874b21...

docker.io/_/jenkins:2.73.2-1 docker.io/_/jenkins@sha256:714c62c1f62c...

docker.io/_/jenkins:2.73.2-2 docker.io/_/jenkins@sha256:60ea1a543548...

$ oc import-image jenkins:2.73.2-2

OpenShift ImageStreams at work
Jenkins image in the Docker registry

Jenkins ImageStream

openshift/jenkins:stable docker.io/_/jenkins@sha256:60ea1a543548...

openshift/jenkins:latest docker.io/_/jenkins@sha256:a4b585874b21...

openshift/jenkins:2.73.2-1 docker.io/_/jenkins@sha256:714c62c1f62c...

openshift/jenkins:2.73.2-2 docker.io/_/jenkins@sha256:60ea1a543548...

docker.io/_/jenkins:latest docker.io/_/jenkins@sha256:a4b585874b21...

docker.io/_/jenkins:2.73.2-1 docker.io/_/jenkins@sha256:714c62c1f62c...

docker.io/_/jenkins:2.73.2-2 docker.io/_/jenkins@sha256:60ea1a543548...

$ oc tag jenkins:2.73.2-2 jenkins:stable

Applications with an
ImageTrigger for stable will
be redeployed!

GitLab-CI Pipelines

• The build and deployment process is fully managed within GitLab-CI
• Building the Docker image

• Importing it to OpenShift

• Testing it

• Uploading the template

• Redeploying all instances

• To interact with OpenShift, we use a centrally provided Docker image
with the oc CLI installed
• https://gitlab.cern.ch/paas-tools/openshift-client

https://gitlab.cern.ch/paas-tools/openshift-client

Automatic testing with GitLab-CI

• For verification of newer releases, automated tests are always run
after a new image is built
• Integrates nicely with GitLab-CI as pipeline can be aborted if test stage fails

• Deployment into OpenShift easily achieved by using oc Docker image

• For Jenkins, two pre-created OpenShift projects are used to:
• Create a brand new instance with the new image and template

• Create an instance with the old image and template and redeploy with the
new image immediately after
• In both cases, a simple Jenkins job is run to verify all is working

Redeploying all instances after a new release

• Redeploying all running Jenkins instances happens whenever the
stable tag is updated

• As this potentially affects all instance owners,
redeployment is launched through a GitLab-CI
manual trigger
• After a global announcement and during a well-known

intervention window

Our deployment workflow - development

• A development pipeline is launched by pushing to any branch of the repository

The image is built with
the latest tag and
pushed to the Docker

registry

Import the built image
into the staging
environment in

openshift-dev.cern.ch

Run automated tests for
the new image

Manual trigger to upload
the template into the

staging environment in
openshift-dev.cern.ch

Only launched when
template has been

modified

Our deployment workflow - production

• A production pipeline is run by pushing a git tag (marked with an image release)

The image is built with
the <git_tag> tag

and pushed to the
Docker registry.

The tag represents a
software release and

have the form of
2.73.2-2

Create tags in the
ImageStream for the new

Docker tag with the
version release

Import the built image
into the staging
environment in

openshift-dev.cern.ch
and also into the

production environment
in openshift.cern.ch

Run automated tests for
the new image

Our deployment workflow – production (II)

• A production pipeline is run by pushing a tag with the image release

Update the templates in both
staging (openshift-dev.cern.ch) and

production (openshift.cern.ch)
environments.

A manual trigger can be used to
update the template in case the

tests do not pass

Tag the release image with stable,
triggering a redeployment of all

applications

For production, this job is usually run
during a previously announced time

window, letting users know their
application will be restarted

Summary

• With this workflow we managed to:
• Offer a centralized template for users to launch private instances of Jenkins

• By running in OpenShift, we get:
• An orchestration platform that we (Jenkins admins) don’t need to manage

• Image management features that allow us to redeploy users’ applications when there
are security fixes and software releases

• By using GitLab-CI, we get:
• We can automate all build, test and deployment operations

• Manual triggers, to launch jobs that required coordination

Templates available at the moment

More coming soon!

What about YOUR app?

• This is our personal experience with the Jenkins Service

• Does your application fit this model?
• Or any software you might want to distribute like this?

• Please reach out if it is the case
• We can provide expertise and help to write a template for your application

and configure the build and deployment process with GitLab-CI
• https://gitlab.cern.ch/paas-tools/openshift_app_template_example

https://gitlab.cern.ch/paas-tools/openshift_app_template_example

