WLCG Collaboration Workshop 21 - 25 April 2008, CERN

¿Future Operations?

Jamie.Shiers@cern.ch

Worldwide LHC Computing Grid

Distributed Production Environment for Physics data Processing

Overview

- It was originally foreseen that Les would give a talk on future challenges / opportunities for WLCG
- ➤ But he wisely ② decided not to be at CERN this week...
- What follows are some thoughts most of which have been aired before in various fora that will hopefully stimulate some discussion...

EGI / WLCG / EGEE III

- We heard yesterday about the goals and timelines of EGI:
 - The European Grid Initiative Design Study EGI_DS
 - Dieter Kranzlmüller
- as well as requirements from WLCG :
 - On the Transition to EGI Requirements from WLCG and Related Projects
 - Ian Bird
- and finally an overview of EGEE III operations
 - Overview of EGEE III operations
 - Maite Barroso Lopez

¿What is EGI Operations?

 To answer this question, we need a much better idea of what "the EGI Grid" will be...

Is it:

- A large-scale, production Grid infrastructure build on National Grids that interoperate seamlessly at many levels, offering reliable and predictable services to a wide range of applications, ranging from "mission critical" to prototyping and research?
- ¿ A loosely coupled federation of NGIs with little or no crossgrid activity, heterogeneous and sometimes incompatible middleware stacks, no cross-grid accounting, no need for coordinated operations or management
- ¿ A bit of both?
- ♦ The conclusion of the Rome EGI_DS Workshop was the former...

EGI Operations Is To Support:

A large-scale, production Grid infrastructure – build on National Grids that interoperate seamlessly at many levels, offering reliable and predictable services to a wide range of applications, ranging from "mission critical" to prototyping and research

 It is also understood that there are different types of Grid usage – it is posited that these can co-exist to each other's mutual benefit...

[Legendary] Grid Classification...

 Grid Computing (potentially) offers value to a wide range of applications, broadly classified as follows:

Provisioned

- Large scale, long term "Grand Challenge"
- e.g. LHC ("space microscopes"), space telescopes,

> Scheduled

- Require large resources for short periods
- Far too expensive to provision for a single 'application'
- Not (always) time critical disaster response?

> Opportunistic

- Which includes the above but also other areas which are less "real time"
- You can find numerous examples of "Mission Critical" applications in each of these categories (e.g. EGEE User Forum!)
 - "Mission Critical" as in "Life or Death"

What's Special about "the Grid"

From the viewpoint of a "large consumer":

- Grids have proven to be an excellent way of federating resources across computer centres of varying sizes into much larger quasi-homogeneous infrastructures.
- This matches well with the needs of international science, allowing resources at participating institutes to meet the needs of the entire collaboration.
- This in turn adds value to the individual sites, leading to a positive feedback situation.

And the EGI Added Value?

- In order to be both attractive and maintainable, Grids need to have the following attributes:
 - 1. Low cost of entry;
 - 2. Low cost of ownership.

both in terms operations as well as application and user support

 The basic principles of reliability and usability must be designed in from the start - adding them later is not consistent with the goals of low s cost of ownership.

How is this achieved?

- ♦ We should not forget one of the key features of the Grid – resilience to failure / scheduled downtime of individual components and / or sites
- This significant advantage can only be realised through a sufficient degree of interoperability & interoperation
- But gives individual NGIs much more freedom & flexibility!

Key Issues

- Non-disruptive & timely transition from current Operations scenarios to EGI+NGIs
- Ensuring "value-for-money":
 - Applications Communities;
 - NGIs;
 - Funding agencies;

must all be convinced that any money involved is not only well but also optimally spent!

Timeline

- In 2010, the LHC will reach design luminosity
- In 2010, EGEE III will terminate
- It is inconceivable that we:
 - a. Don't run the LHC machine
 - b. Run the LHC machine without a computing infrastructure
 - c. Run the computing infrastructure without Grid operations
- This is required for other mission critical applications that are dependant on this infrastructure
- **♦** The transition to the new scenario must be
 - a. On time
 - b. Non-disruptive
- This is a fundamental requirement it is not an issue for discussion

From the DoW...

- **♦ The establishment of EGI is guided by two basic principles:**
 - Build on the experience and successful operation of EGEE and related projects
 - 2. Make EGI operational before EGEE III ends

Key EGI Assumptions

- EGI is small significantly smaller, say, than what EGEE (I, II, III) has funded at CERN
- It is <u>not</u> located at CERN
- The EGI does <u>not</u> run / provide large-scale Grid services / resources
- It is **not** co-located at or near a centre of gravity for any particular application community

The WLCG Experience

- There can be no doubt that the close physical proximity / inter-mingling people from the different projects (LCG, EGEE, related, ...) has been extremely beneficial during the deployment and hardening phases of WLCG
- This is clearly not scalable to large numbers of application communities and may well be in contradiction with a "sustainable (longterm?) e-instructure"

The role of EGI

- Coordination across the NGIs
 - Operations overall SLAs, reporting, accounting, reliability, etc.
 - Cross NGI operations issues should be an agreed process for the NGIs (EGI should broker these processes)
 - Brokering of resources for applications with the NGIs
 - Operational security coordination e.g. Incident response
 - Common policy brokering
 - Support for international VO's (like WLCG) − should they really negotiate with 35 NGIs?
- Integration/certification/testing of middleware
 - Whatever this means many different stacks will be existing
 - Work on "interoperability" is difficult and slow, but running parallel middleware stacks on a site is also very costly

Key Issues

- Non-disruptive & timely transition from current Operations scenarios to EGI+NGIs
- Ensuring "value-for-money":
 - Applications Communities;
 - NGIs;
 - Funding agencies;

must be convinced that any money involved is not only well but also optimally spent!

EGI Transition Proposal

- The EGEE Grid is currently used for large-scale production by a number of scientific VOs.
- It will be unacceptable to them to have a disruptive transition to a different operational grid in EGI.
- The two options are:
 - Define the EGI model very quickly to allow a smooth transition during EGEE III
 - 2. Assume that Day One EGI Operations follow the EGEE model and any subsequent change is evolutionary
- Given the experience in previous Grid projects, it is presumably too late for the first so we propose a working assumption of the second.

Adapted from proposal by John Gordon, hence focus on EGEE. Requirement for smooth and timely transition equally valid for other production Grids!

How to achieve this?

- The EGEE Operational model has three levels: EGEE-wide, Regional, and National
 - Don't forget we already have national duties like CA management.
- The migration to EGI will involve a migration of duties down towards NGIs
- The migration from Central to Regional has started in EGEE III
- Our proposal is that responsibility for the balance between Regional and National be left to the group of NGIs that make up each existing Region.
- They have the joint duty to continue the existing EGEE service in their region.
- They have the freedom to deliver this any way they choose
 - at one extreme they may decide to continue with the existing ROC and organise its funding internally.
 - at the other they may decide to devolve everything to each NGI
 - More likely is some combination of the two, with some migration from the former to the latter over time.
- Leave this to the regions. They can then progress independently as suits regional and national needs and priorities. EGI defines and monitors the operational service definition to ensure a seamless grid for the users.

Adapted from proposal by John Gordon, hence focus on EGEE. Requirement for smooth and timely transition equally valid for other production Grids!

Core Operations Tasks

- Regional Operations coordination;
- Coordination and support for roll out of mw updates;
- Grid security and incident response coordination;
- Interoperations (OSG, EU related projects);
- Weekly operations meetings and operations workshops;
- Support from mw resident service experts;
- Middleware release support;
- VO Membership Service;
- Service Availability Monitoring;
- User support coordination and the global Grid user support (GGUS);
- Certification authority for various VOs;
- Monitoring;
- Pre-production coordination;
- Triage of incoming problems and assignment of tickets to second line support units

Operations Resources

Core Functions	FTEs
Operation of a reliable Grid infrastructur	e 13
Accounting, reporting & Monitoring	3
VO Management	1
Pre-production coordination	1
Help Desk	3
Network Co-ordination	2

- Resource estimation from draft document for EGI_DS deliverable 5.1
- Needs to be compared with "reality" i.e. what was on the floor in EGEE II / III
- Transition can be expected to require additional resources!

And the EGI Added Value?

- In order to be both attractive and maintainable, Grids need to have the following attributes:
 - 1. Low cost of entry;
 - 2. Low cost of ownership.

both in terms operations as well as application and user support

- © Currently, adapting an existing application to the Grid environment is a non-trivial exercise that requires an in-depth understanding not only of the Grid computing paradigm but also of the computing model of the application in question.
- One reason for the success of the Application Support team at CERN has been the very close physical proximity of: "the highest level of middleware expertise"
- I would also like to add the enormous enthusiasm and dedication of the people involved!

Summary

- I do not claim to have resolved any issues or even raised the relevant ones
- However, it is clear that the transition from today's WORKING Grid to a future, multi-disciplinary, low-costof-entry/ownership, NGI-based Grid with a minimal set of functions / responsibilities at the "EGI level" will take some time to plan and many years to execute
- We should be proud of what we have achieved with a not insignificant amount of effort
- We should build on this and evolve it into a future Grid that provides more functionality to larger numbers of application communities at lower cost
- ♠ And not change for the sake of change...

