Follow up on vibration studies: estimation of the impact at the collimators

D. Gamba, R. Corsini

99th HiLumi WP2 Meeting – 25/07/2017
Outline

- Recap from my previous presentation.
 - Initial picture slightly changed.
- New calculations:
 - Normalisation with respect to beam sigma.
 - Luminosity reduction estimation.
 - Amplification effects at collimators.
- Recap on actual ground motion estimation.
 - Amplification of cold mass.
 - Old measurements/estimations.
- TODO list
From previous meeting

- Computing closed-orbit separation at the IPs under the effect of triplet transverse misalignments.
- “Best case” scenario:
 - Each element moves independently from the others.
 - Sum in quadrature of each single element effect
- “Worst case” scenario:
 - The whole IR moves coherently according to the worst mode.
 - Sum of the absolute effects within each IR, then in quadrature over the 4 IRs
Conclusions from previous meeting:

- The main concern is the factor 2 smaller (nominal) beam size at IP1/5 with respect to LHC.
Optics now analyzed

- **HL-LHC 1.3 July 2017 (≠ January 2017):**
 - $\beta^* = 15\text{cm}$ (as in January, even if present baseline is 20 cm)
 - on_x1=255; phi_ir1 = 90; on_x5=255;
 - on_x2=170; phi_ir2 = 90; on_x8=-250;
 - on_lhcb=-1; on_alice=1;
 - E = 7 TeV; $\sigma_E = 1.08e-04$; $\varepsilon_N = 2.5$ μm

- **LHC (runll/2016/opt_400_10000_400_3000_totem5.madx)**
 - $\beta^* = 40\text{cm}$
 - on_x1 = -185; on_x5 =185; on_x2 = 200; on_x8 = -250;
 - on_sep(1258)=0; on_o(1258) = 0;
 - E = 6.5 TeV; $\sigma_E = 1.13e-04$; $\varepsilon_N = 3.75$ μm
Repeated simulations.

HL-LHC 1.3
January

HL-LHC 1.3
July

Probably different phase advance. To be re-checked.
Normalisation to beam size

HL-LHC:
Beam $\sigma \approx 7 \, \mu m$

LHC:
Beam $\sigma \approx 15 \, \mu m$
Luminosity [1]

\[
\mathcal{L} = \frac{N_1 N_2 f N_b}{2\pi \sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \sqrt{\sigma_{1y}^2 + \sigma_{2y}^2}} W e^{\frac{p^2}{A}} S
\]

\[
W = e^{-\frac{1}{4\sigma_x^2}(d_2-d_1)^2}
\]

\[
A = \frac{\sin^2\left(\frac{\phi}{2}\right)}{\sigma_x^2} + \frac{\cos^2\left(\frac{\phi}{2}\right)}{\sigma_s^2}
\]

\[
B = \frac{(d_2 - d_1) \sin\left(\frac{\phi}{2}\right)}{2\sigma_x^2}
\]

\[
S = \frac{1}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \tan\left(\frac{\phi}{2}\right)\right)^2}}
\]

Dynamic effect

Assuming all Gaussian:

\[
\langle W \rangle = \int_{-\infty}^{\infty} e^{-\frac{1}{4\sigma_b^2} (s)^2} \left(\frac{1}{\sqrt{2\pi}\sigma_s} \right) e^{-\frac{s^2}{2\sigma_s^2}} \, ds
\]

\[
= \frac{1}{\sqrt{2\pi}\sigma_s} \int_{-\infty}^{\infty} e^{-\frac{s^2}{2} \left(\frac{1}{2\sigma_b^2} + \frac{1}{\sigma_s^2} \right)}
\]

\[
= \frac{\sqrt{2\sigma_b}}{\sqrt{\sigma_s^2 + 2\sigma_b^2}}
\]

\[
= \frac{\sqrt{2}}{\sqrt{\sigma_s^2 / \sigma_b^2 + 2}}
\]

Where:

\[\sigma_b = \sigma_{\text{beam}} \]

\[s = d_2 - d_1 \]

\[\sigma_s = \text{r.m.s. separation jitter} \]

For uncorrelated planes:

\[
\langle W \rangle = \frac{2}{\sqrt{\sigma_{sx}^2 / \sigma_x^2 + 2} \sqrt{\sigma_{sy}^2 / \sigma_y^2 + 2}}
\]
Luminosity loss (dynamic)

HL-LHC:

\[\frac{L}{L_0} = 0.5 \]

LHC:

\[\frac{L}{L_0} = 0.5 \]

σ_{field} = 0.5 \, \mu m
Effect at collimators (B1)

Note: Limit is 200 μm, but in 2012 smaller movements caused dumps [Rogelio]
Effect at collimators (B2)

Note: Limit is 200 μm, but in 2012 smaller movements caused dumps [Rogelio]
Effect at collimators (B1) – norm beam sigma

HL-LHC

Horizontal

Vertical

LHC:

Graphs show the normalized beam sigma for different scenarios:
- **Uncorrelated**
- **Cryo-correlated**
- **IPSide-correlated**
- **IP-correlated**

Axes:
- σ_x / σ_y (field motion) [um]
- σ_y / σ_x (field motion) [um]

Labels:
- TCP_D6L7_B1
- TCP_C6L7_B1
- TCP_B6L7_B1
- TCPV_A6L7_B1
- TCPCH_A4L7_B1
- TCP_6L3_B1
Effect at collimators (B2) – norm beam sigma

HL-LHC

Horizontal

- $\sigma_x / \sigma_{(field motion)}/[\mu m]$ for various components:
 - TCP 8R3.B2
 - TCP D6R7.B2

Vertical

- $\sigma_y / \sigma_{(field motion)}/[\mu m]$ for various components:
 - TCP 8R3.B2
 - TCP D6R7.B2

LHC:

- Similar graphs for LHC components with the same notation.
Effect at secondary collimators (B1) norm beam sigma

HL-LHC:

LHC:
Effect at secondary collimators (B2) norm beam sigma

HL-LHC:

LHC:

Horizontal

Vertical

HiLumi ML-LHC PROJECT
Amplification by cold mass

Vibration analysis of TT41 TAG41, Michael Guinchard, 16 Jul 2015

Measurements confirmed by modal analysis [5].
According to the transfer function measured at SM18 on Q1, the expected motion of the cold mass during LHC operation is around 0.1 µm integrated from 100 Hz. [M. Guinchard, 16/07/2015]

For standard civil engineering tools at the surface, the expected magnetic center motion should stay below 0.5 µm between 4 and 100 Hz. [M. Guinchard, 29/05/2017]
Measurements done in the past

Vibrating truck impact

- Beam measurements with the vibrating truck were performed for the squeezed optics (80 cm) at 6.5 TeV and at injection.
 - Multi-turn data (all BPMs) & ADT data.

- Measurements results:
 - Beam oscillations were only observed in the vertical plane ⇔ truck location.
 - Beam oscillations were only observed for vibration frequencies of 18-22 Hz – consistent with the triplet resonances.
 - Observed B1/B2 amplitude ratio of ~2.5 implies that the different triplet quads oscillated with different amplitudes.
 - The oscillation amplitudes of the triplet CMs were in the few μm range for a ground motion amplitudes of ~50 nm in the tunnel.

The observations are consistent with the triplet resonances that enhance the vibrations by a factor >> 10

Rough calculation:

\[\sqrt{\frac{\beta_{ADT}}{\beta^*}} \approx 20 \]

Amplification x5 (?!)
by LHC optics

80 [μm] \[\frac{20 \times 5}{5} = 0.8 [μm] \]

Amplification x16?! (x100)
by cold mass
MQXA Cold Mass – EMA Results (modal shapes)

Vertical Modes

1st

![Vertical Mode 1st](image)

- 23.5 Hz

2nd

![Vertical Mode 2nd](image)

- 65.9 Hz

Lateral Modes

1st

![Lateral Mode 1st](image)

- 25.7 Hz

2nd

![Lateral Mode 2nd](image)

- 63.4 Hz

3rd

![Lateral Mode 3rd](image)

- 104 Hz

From: M. Guinchard, 29/05/2017

- In the previous simulations I assume that the whole magnet is rigidly displaced.
- The **actual effect on the beam might be smaller**.
 - TODO: simulate it.
 - Repeat for HL-LHC.
Still TO DO…

- Perform new **measurements**:
 - **3 geophones** sensors (IP1, IP5 and surface) are now logged on Timber.
 - Contact person is Michael Guinchard.
 - Look at correlations with beam orbit (**DOROS, ADT**) and losses at collimators.
 - More ADT data will be available/logged during summer.
 - (see also [7] for online data retrieval)
 - **Spectra of the beam oscillation** have been computed only occasionally in the past
 - need to perform systematic analysis.
- Follow up on the response of the **new cold masses**.
 - **Simulations** taking into account actual **vibration modes**.
 - Contact person is Delio Duarte Ramos.
Still TO DO…

- Idea of having back the “vibrator truck” back to CERN for further studies.
 - When tests done in 2015 only looked at multi-turn data (good enough for a few Hz expected oscillations)
 - Presently this idea is dropped, but it could be re-considered [P.Fessia].

- Contribute to OP effort:
 - Jorg and Michaela aim is to observe and quantify the noise now and next year when excavation works will start.
 - Also interested in single-source events (earthquakes).

- Follow Geothermie 2020 evolution. [9]
The program might be stopped in Geneva.

- It could induce small earthquakes (several per week)
- Expected cold mass movements up to 10 μm! [10]

Recent developments close to Vernier:

- But much less deep drilling (only about 60 m) and not of a few thousand metres as foreseen by GEothermie2020 plan.

... to be followed up!
Conclusions

- HL-LHC optics is very similar to LHC in terms of sensitivity to ground motion, but:
 - x2 smaller beam size -> x2 more sensitive to possible luminosity degradation.
 - x2 more sensitive at collimators.

- Confidence on the model of ground motion
 - Geophones will give additional information.

- It is important to follow up on the new cold mass design (and its resonances)
 - We might gain what we loose from optics.
Some references

1. Vibration analysis of TT41 TAG41, M. Guinchard, 16 Jul 2015 [link]
2. Observation of ground motion in the LHC, M. Fitterer, 27 Aug 2015 [link]
3. Lessons Learned from the Civil Engineering Test Drilling and Earthquakes on LHC Vibration Tolerances, J. Wenninger, 28 Jan 2016 [link]
4. Vibration: is still an issue?, P. Fessia, 26 Jan 2017 [link]
5. Overview of the vibration issues for the HL-LHC project, M. Guinchard, 29 May 2017 (link)
6. ADT Operation, D. Valuch, 16 Dec 2015 (link)
7. ObsBox status and plans in the transverse plane, D. Valuch, 30 Mar 2016 (link)
8. Vibration monitoring of LHC accelerators. SIG Collaboration for seismic measurements. (link)
9. Déplacements attendus au CERN lors de séismes induits (link)
10. Geophones UP53 & UL16, Morgane Cabon, 16 Jul 2016 (link)

11. Swiss Seismic Network data available here: http://arclink.ethz.ch/webinterface/ (See also http://www.seismo.ethz.ch)
From last meeting

- Rogelio clarifies that one cannot rely on the orbit feedback to maintain collision.
- Gianluigi suggests marking the frequencies of the two modes on the spectrum plot.
- Gianluigi suggests normalising the plot to beam sigma and to show the corresponding luminosity reduction.
- Gianluigi suggests trying to use measurements with the DOROS and the measurements of the ground motion at the triplets in order to infer the amplification factors and/or typical patterns in the movement of the triplets.
- Gianluigi suggests checking the induced movements of the beam also at the positions of collimators as a large movement there can lead to loss spikes and beam dump. Rogelio: limit is 200 μm, but smaller movements led to beam dumps in 2012.
Repeated simulations.

HL-LHC 1.3 January

Probably different phase advance. To be re-checked

HL-LHC 1.3 July