

Follow up on the impact of crab cavity noise on luminosity

L. Medina^{1,2}, R. Tomás²

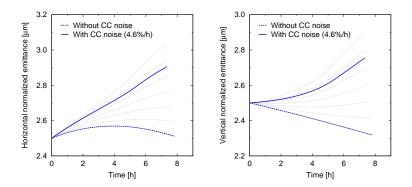
¹ División de Ciencias e Ingenierías Universidad de Guanajuato

² CERN, BE-ABP

Aknowledgements to: P. Baudrenghien (CERN, BE-RF)

19 July 2017

Introduction

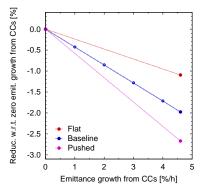

- Crab cavities (CCs) induce emittance blow-up¹.
- Simulations of the optimum fills for the Baseline, Flat, No CCs, and Pushed², at nominal ($\mathcal{L}_{\mathsf{lev}} = 5.0 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$) and ultimate ($\mathcal{L}_{\mathsf{lev}} = 7.5 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$) operation, to asses the impact on integrated performance.
- Growth rates from phase and amplitude noise: **0.94 %/h** and **3.7 %/h**, respectively (at $\beta^* = 15$ cm and with 2 CCs).
 - In addition to intrabeam scattering and synchrotron radiation (and 40h growth in the vertical plane).

Parameter	Unit	Baseline	Flat	No CCs	Pushed
Minimum β^*_{\times} , β^*_{\parallel}	cm	20, 20	40, 15	40, 15	15, 15
Full crossing angle	µrad	510	360	360	480
Minimum beam separation	σ	12.5	12.5	12.5	10.0
Crabbing angle	µrad	380	360	0	380

¹P. Baudrenghien, 96th HiLumi WP2 Meeting

²Y. Papaphilippou, LHC Performance Workshop Chamonix 2017.

Emittance evolution: baseline nominal

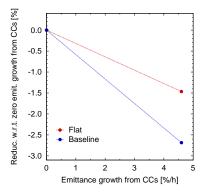

Contributions to both transversal planes:

$$\left(\frac{d\epsilon}{dt}\right)_{\rm CC} \approx 4.6\,\%/{\rm h}\cdot\frac{V_{\rm CC}^2}{(6.8\,{\rm MV})^2}\frac{15\,{\rm cm}}{\beta^*} \approx 4.6\,\%/{\rm h}\cdot\frac{\theta_{\rm CC}^2}{(380\,\mu{\rm rad})^2}\frac{15\,{\rm cm}}{\beta^*}$$

• Emittance growth rates of 1.1 %/h and 3.5 %/h at the beginning and at the end of the β^* -levelling, respectively.

Integrated luminosity: nominal

- Reduction of L_{int} is linear for small emittance growth rate from CCs.
- Baseline nominal performance is reduced by 2%.
- CC noise results in only 1 % lumi loss in the Flat scenario.
- ▶ The largest impact is on Pushed (2.7%).
- Relative performance loss from the absence of CCs w.r.t. baseline shrinks from 9% to 7%.



$\mathcal{L}_{lev} = 3.0 \times 10^{\circ} \text{ cm}^{\circ} \text{ 3}^{\circ} \text{)}$								
Parameter	Unit	Baseline	Flat	No CCs	Pushed			
$\overline{\epsilon_{x,n}}$ at the end of fill	μm	$2.51 \rightarrow 2.90$	$2.56 \rightarrow 2.74$	2.59	$2.48 \rightarrow 2.95$			
$\epsilon_{y,n}$ at the end of fill	μm	$2.32 \rightarrow 2.76$	$2.32 \rightarrow 2.52$	2.35	$2.30 \rightarrow 2.80$			
Yearly integ. lumi. fb^{-1}	/160 days	$234 \rightarrow 229$	$234 \rightarrow 231$	214	$244 \rightarrow 238$			

Nominal ($\mathcal{L}_{lev} = 5.0 \times 10^{34} \, cm^{-2} \, s^{-1}$)

Integrated luminosity: ultimate

- Baseline: L_{int} increase from nominal to ultimate, reduced from 37.5% to 34%.
- Integrated performance of Flat scenario is lowered by 1.5%.
- No CCs: 14.7 % → 12.4 % relative loss w.r.t. baseline.
- An optimized Pushed at ultimate operation is needed for evaluation.

Parameter U	nit	Baseline	Flat	No CCs			
$\epsilon_{x,n}$ at the end of fill μ	m	$2.52 \rightarrow 2.86$	$2.55 \rightarrow 2.71$	2.57			
$\epsilon_{y,n}$ at the end of fill μ	m	$2.38 \rightarrow 2.76$	$2.38 \rightarrow 2.56$	2.38			
Yearly integ. lumi. $fb^{-1}/1$	60 days	$321 \rightarrow 313$	$322 \rightarrow 318$	274			

Ultimate ($\mathcal{L}_{lev} = 7.5 \times 10^{34} \, cm^{-2} \, s^{-1}$)

Conclusions

- Baseline performance is reduced by 2% (nominal) and 2.7% (ultimate) due to CC noise.
- Flat scenario less sensitive to this due to reduced crossing (and crabbing) angle and larger β^* : 1% (nominal) and 1.5% (ultimate).
- Implementation of mitigation techniques to reduce the impact of CC noise on the integrated performance are required, specially in view of the Pushed scenario.
- ▶ Lumi loss from the **absence of CCs** goes from 9% to 7% (nominal) and 14.7% to 12.4% (ultimate) w.r.t. baseline.