Measurement of $\mathbb{B} \rightarrow \ell^+ \ell^-$ decays at LHCb

Matteo Rama

ISTITUTO Nazionale di Fisica Nucleare

INFN sezione di Pisa

on behalf of the LHCb collaboration

'Impact of B $\rightarrow \mu\mu$ on New Physics Searches' Workshop, PSI, 18-19 December 2017

Outline

- Measurement of $B^0_{(s)} \rightarrow \mu^+ \mu^-$ BF and effective lifetime [PRL 118, 191801 (2017)]
- Search for $B^0_{(s)} \to \tau^+ \tau^-$
- Search for $B^0_{(s)} \to e^{\pm} \mu^{\mp}$

[PRL 118, 251802 (2017)]

[LHCb-PAPER-2017-031]

 $B_{(s)}^{0} \to \mu^{+}\mu^{-}$ @ LHC before 2017

- CMS-LHCb combined analysis with Run 1 data
 - Observation of $B_s^0 \rightarrow \mu\mu$ $BF(B_s^0 \rightarrow \mu^+\mu^-) = 2.8^{+0.7}_{-0.6} \times 10^{-9}$ 6.2 σ significance observed compatible with SM @ 1.2 σ
 - Evidence of $B^0 \rightarrow \mu\mu$ $BF(B^0 \rightarrow \mu^+\mu^-) = 3.9^{+1.6}_{-1.4} \times 10^{-10}$ 3.0σ significance observed compatible with SM @ 2.2σ
- ATLAS with Run 1 data

$$BF(B_s^0 \to \mu^+ \mu^-) = 0.9^{+1.1}_{-0.8} \times 10^{-9}$$
$$BF(B^0 \to \mu^+ \mu^-) = 4.2 \times 10^{-10} @95 CI$$

New LHCb BF measurement in 2017

Analysis procedure similar to that of previous round but with some significant improvements

Analysis strategy:

- Pairs of opposite-charge muons selected with $m_{\mu\mu} \in [4900,6000] MeV/c^2$
- After pre-selection, the sample is split in bins of a Boosted Decision Tree (BDT) output. BDT based on kinematic and geometrical variables. Signal BDT shape calibrated on data with $B_s^0 \rightarrow h^+h'^-$ decays.
- BFs extracted from fit to $m_{\mu\mu}$ in bins of BDT, using $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow K^+\pi^-$ as normalisation channels.

Main analysis improvements:

- New isolation variables, also exploiting 'VELO' tracks in addition to 'long' tracks. Much better BDT performance in rejecting the comb. background
- Tighter PID selection to reject 'exclusive backgrounds' (optimized for B^0)
- Improved estimate of exclusive background yields

New track isolation

typical combinatorial background event with two muons from different b decays

- Previous muon isolation based on rectangular cuts on variables related to the neighbour tracks information
- Two multivariate classifiers used now, one based on "long tracks"¹, the other with tracks reconstructed only in the VELO detector

¹ tracks passing through all tracking stations

Multivariate classifier (BDT)

- Long track isolation used as starting point to build the global BDT classifier
- Optimisation and training on MC
- Correlation with $m_{\mu\mu}$ below 5%
- Compared to prev analysis: -50% comb background with same signal efficiency

7 input variables: 2 track isolations + the 5 quantities shown below

BDT calibration

- BDT output defined to be flat for B⁰ signal and peaking at zero for combinatorial background
- $B^0 \rightarrow \mu^+ \mu^-$ BDT shape derived from $B^0 \rightarrow K^+ \pi^-$ in data corrected for trigger and PID selection. Additional lifetimerelated correction for $B_s^0 \rightarrow \mu^+ \mu^-$

'Impact of B $\rightarrow \mu\mu$ on New Physics Searches' Workshop

Backgrounds

Yields of main exclusive backgrounds in signal region with BDT>0.5:

- Above decays taken into account in the fit. Mass and BDT shapes determined from simulated samples with misID prob calibrated on data
- $B \rightarrow h^+ h'^-$ efficiency reduced by ~ 2 w.r.t. previous analysis thanks to tighter PID requirements, to optimize sensitivity to $B^0 \rightarrow \mu^+ \mu^-$ (-10% signal eff.)
- Independent $B^0_{(s)} \to h^- \mu^+ \nu_\mu$ and $B \to h^+ h'^-$ estimates from $h\mu$ mass spectra
- $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ has negligible impact on fit result
- Comb. bkg: -20% due to tighter PID → -60% total reduction from BDT + PID

Normalisation

- $\alpha_s = (5.7 \pm 0.4) \times 10^{-11}$; $\alpha = (1.60 \pm 0.04) \times 10^{-11}$ Weighted averages from $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow K^+\pi^-$
- $\epsilon_{norm}^{Acc}/\epsilon_{sig}^{Acc}$ and $\epsilon_{norm}^{RecSel|Acc}/\epsilon_{sig}^{RecSel|Acc}$ evaluated with MC + corrections from data
- $\epsilon_{norm}^{Trig|RecSel}/\epsilon_{sig}^{Trig|RecSel}$ evaluated with data-driven technique systematic error
- $f_s/f_d = 0.259 \pm 0.015$ measured by LHCb at 7 TeV
- $BF(B^0 \to K\pi)/BF(B^+ \to J/\psi K^+)$ and $BF(B_s \to J/\psi \phi)/BF(B^+ \to J/\psi K^+)$ used as validation tool

'Impact of B $\rightarrow \mu\mu$ on New Physics Searches' Workshop

BF fit

- Unbinned maximum likelihood fit of $m_{\mu\mu}$ in bins of BDT
 - 5 BDT bins for each Run 1 and Run 2 dataset
- Free parameters: $BF(B^0 \rightarrow \mu\mu)$, $BF(B^0_S \rightarrow \mu\mu)$, combinatorial background
- Exclusive bkg yields and other nuisance parameters are constrained according to their expected values and uncertainties

Results

• Fit results:

 $BF(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \qquad 7.8 \sigma$ $BF(B^0 \to \mu^+ \mu^-) = (1.5^{+1.2}_{-1.0} {}^{+0.2}_{-0.1}) \times 10^{-10} \qquad 1.6 \sigma$ $< 3.4 \times 10^{-10} \quad \text{at 95\% CL}$

PRL118, 191801 (2017) arXiv:1703.05747

compatible with SM

The fit assumes $\tau(B_s^0 \to \mu\mu) = \tau_{B_s}/(1 - y_s)$ (i.e. $A_{\Delta\Gamma} = 1$) The measured $B_s^0 \to \mu\mu$ BF increases by 4.6% (10.9%) if $A_{\Delta\Gamma} = 0$ (-1) is assumed (the efficiency decreases)

Main source of systematic uncertainty: $BF(B_s^0 \rightarrow \mu^+\mu^-)$: knowledge of f_s/f_d $BF(B^0 \rightarrow \mu^+\mu^-)$: exclusive backgrounds

$B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime

Effective lifetime:

$$\tau_{\mu^+\mu^-} \equiv \frac{\int_0^\infty t \langle \Gamma(B_s^0(t) \to \mu^+\mu^-) \rangle dt}{\int_0^\infty \langle \Gamma(B_s^0(t) \to \mu^+\mu^-) \rangle dt}$$

• The following holds:

$$\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}^{0}}}{1 - y_{s}^{2}} \left(\frac{1 + 2A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right)$$

$$y_{s} \equiv \tau_{B_{s}} \Delta\Gamma/2 = 0.062 \pm 0.006 \text{ ps}^{-1}$$

$$A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} = -2Re(\lambda)/(1 + |\lambda|^{2}) \text{ with } \lambda = q/p A(\bar{B}_{s}^{0} \to \mu^{+}\mu^{-})/A(B_{s}^{0} \to \mu^{+}\mu^{-})$$

PRL 109, 041801 (2012)

 $\varphi_S = \pi/2$

 $\varphi_S = \pi/4$

|S| = |P|

 $\overset{\varphi_{s} = 0}{\overbrace{}} \text{Scalar NP} (\mathbf{C}_{\mathbf{S}}^{(l)})$

 $|P| = 1, |S| = 0, \varphi_P = 0$

 $\varphi_P = \pi/4$

Non-scalar

 $NP(C_{10}^{(\prime)}, C_{20}^{(\prime)})$

SM

1.0

0.8

0.6 0.4

0.2

0.0 - 0.2

-0.4

 $4_{\Delta\Gamma}(B_s o \mu^+\mu^-)$

A^{μ⁺μ⁻}_{ΔΓ} = 1 in SM, can be in [−1,1) if NP occurs
 → additional probe for NP, complementary to the branching ratio

 $au_{\mu^+\mu^-}$ never measured so far

'Impact of $B \rightarrow \mu \mu$ on New Physics Searches' Workshop

Analysis strategy

- Very similar selection as for the BF measurement. Same BDT but simplified BDT>0.55 requirement.
- Fit performed in 2 stages:
 - Fit on $m_{\mu\mu}$ in [5320,6000] MeV/c^2 to evaluate weights with the sPlot technique
 - Fit to the weighted decay-time distribution to determine $\tau_{\mu\mu}$
- Decay-time acceptance function modeled on simulated $B_s^0 \rightarrow \mu^+ \mu^-$ events

$$\epsilon(t) = \frac{\left[a\left(t - t_0\right)\right]^n}{1 + \left[a\left(t - t_0\right)\right]^n}$$

• Acceptance function (and overall procedure) validated by measuring $\tau(B^0 \rightarrow K^+\pi^-)$

 $\tau(B^0 \to K^+\pi^-) = 1.52 \pm 0.03(stat) \text{ ps}$

consistent with PDG average

Results

- The mass fit includes $B_s^0 \rightarrow \mu^+ \mu^-$ and combinatorial background
 - Contamination from B⁰ → μ⁺μ⁻ and other backgrounds treated as systematic
 - Fit procedure validated with simulated events and $B^0 \rightarrow K^+ \pi^-$
- Fit result:

 $\tau(B_s^0 \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$

Measurement consistent with $A_{\Delta\Gamma}^{\mu^+\mu^-} = 1(-1)$ hypothesis at 1.0(1.4) σ

PRL118, 191801 (2017) arXiv:1703.05747

Prospects

LHC era			HL-LHC era	
Run1 (2010-12)	Run2 (2015-18)	Run3 (2021-23)	Run4 (2026-29)	Run5+ (2032+)
3fb ⁻¹	8fb ⁻¹	\rightarrow	50fb ⁻¹	*300fb ⁻¹

* assumes Phase-II upgrade runs with $L = 2 \times 10^{34} cm^{-2} s^{-1}$

$$R \equiv \frac{BF(B^0 \to \mu\mu)}{BF(B_s^0 \to \mu\mu)}$$

By the end of Run 4 (50 fb⁻¹): $\sigma(R) \sim 40\%$ $\sigma(\tau_{B_s \rightarrow \mu\mu}) \sim 0.08 \text{ ps}$

After hypothetical phase-II (300 fb⁻¹): $\sigma(R) \sim 20\%$ $\sigma(\tau_{B_s \to \mu\mu}) \sim 0.03 \text{ ps}$

NB: estimates for R are based on Run 1 analysis \rightarrow the performance improvement of the latest measurement is not taken into account

submitted to LHCC this year

Search for
$$B_{(s)}^0 \rightarrow \tau^+ \tau^-$$
 decays

• FCNC processes analogous to $B^0_{(s)} \rightarrow \mu^+ \mu^-$ but much less suppressed

$$\frac{\mathcal{B}(\mathsf{B}^{0}_{(\mathsf{s})} \to \tau^{+}\tau^{-})}{\mathcal{B}(\mathsf{B}^{0}_{(\mathsf{s})} \to \mu^{+}\mu^{-})} = \frac{m_{\tau}^{2}}{m_{\mu}^{2}} \times \sqrt{\frac{m_{\mathsf{B}}^{2} - 4m_{\tau}^{2}}{\frac{m_{\mathsf{B}}^{2} - 4m_{\mu}^{2}}{\sqrt{2}}}}$$

$$283 \times 0.74 \sim \mathbf{210}$$

- With $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ they can test lepton flavor universality
- SM time-integrated BF:

 $BF(B_s^0 \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$ $BF(B^0 \to \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$ [Bobeth et al, PRL 112 (2014), 101801]

- τ leptons selected in $\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$. τ decay model tuned on BaBar data
- Experimentally VERY challenging due to two neutrinos in final state
- B_s^0 and B^0 cannot be separated: assumption on one decay needed to extract limit on the other

Search for $B_{(s)}^0 \rightarrow \tau^+ \tau^-$ decays [PRL 118 (2017) 251802]

- Approximate reconstruction of $B \rightarrow \tau^+ \tau^-$ decay chain by exploiting geometrical and mass constraints
- Definition of *signal*, *control* and *NN training* samples based on $(m_{\pi_1^{\pm}\pi_2^{\mp}}, m_{\pi_3^{\pm}\pi_2^{\mp}})$ of $\tau^{\pm} \rightarrow \pi_1^{\pm}\pi_2^{\mp}\pi_3^{\pm}\nu_{\tau}$ decays
 - signal region: both au^{\pm} in 5
 - background control region: one τ in 4 or 8, the other in 4, 5 or 8
 - background NN training region: at least one τ in 1, 3, 7 or 9
- After pre-selection, NN built with geometric, kinematic and isolation variables to separate signal and background

signal NN distribution uniform in [0,1], background peaks at 0

Search for $B_{(s)}^0 \rightarrow \tau^+ \tau^-$ decays [PRL 118 (2017) 251802] $N_{B^0 \to D^- D_c^+} = 10630 \pm 110 \text{ (stat)}$ 1800₀ • $B^0 \to D^+[K^-\pi^+\pi^+]D_s^-[K^+K^-\pi^-]$ used as Candidates / (5 MeV/ c^2) LHCb 1600 calibration and normalisation channel 1400 + Data 1200 $-B^0 \rightarrow D^- D^+_s$ Signal extracted from fit to NN in signal region: $\cdots B^0 \rightarrow D^{*-}D_s^+$ 1000 $\cdots B^0 \rightarrow D^- D_s^{*+}$ 800 $\mathcal{B}(B^0_s \to \tau^+ \tau^-) = \alpha^S \times N_{B_s \to \tau\tau}$ ----- Comb. bkg. 600 400 $\alpha^{s} \equiv \frac{\epsilon^{D^{-}D_{s}^{+}} \times \mathcal{B}(B^{0} \to D^{-}D_{s}^{+}) \times \mathcal{B}(D^{+} \to K^{-}\pi^{+}\pi^{+}) \times \mathcal{B}(D_{s}^{+} \to K^{+}K^{-}\pi^{+})}{N_{D^{-}D^{+}}^{\text{obs}} \times \epsilon^{\tau^{+}\tau^{-}} \times \left[\mathcal{B}(\tau^{-} \to \pi^{-}\pi^{+}\pi^{-}\nu_{\tau})\right]^{2}} \times \frac{f_{d}}{f_{s}}$ 2005000 5100 5200 5300 5400 5500 5600 5700 $m_{D^-D_c^+}$ [MeV/ c^2] $BF(B_s^0 \to \tau^+ \tau^-) < 5.2(6.8) \times 10^{-3}$ at 90(95)% CL $N_{B_s \to \tau\tau} = -23^{+63}_{-53}(stat)^{+41}_{-40}(sys)$ Candidates LHCb Assuming signal fully dominated by B^0 : -1 × Signal $BF(B^0 \rightarrow \tau^+ \tau^-) < 1.6(2.1) \times 10^{-3}$ at 90 (95%) CL Background 10 x 2.6 improvement w.r.t. previous result from BaBar [PRL 96 (2006) 241802] Pull

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Neural network output

Updated search for $B_{(s)}^0 \rightarrow e^{\pm} \mu^{\mp}$ decays

- Lepton flavour violating process
- Decay allowed in several New Physics scenarios including e.g. models with Z' boson, heavy singlet Dirac neutrinos, SUSY and the Pati-Salam model
- Complementary probe to direct searches of NP particles at ATLAS and CMS
- Previous best limits by LHCb based on 1 fb⁻¹ Run1 data

 $BF(B_s^0 \to e^{\pm}\mu^{\mp}) < 1.1(1.4) \ 10^{-8} \ @ \ 90(95)\% \ \mathsf{CL}$ $BF(B^0 \to e^{\pm}\mu^{\mp}) < 2.8(3.7) \ 10^{-9} \ @ \ 90(95)\% \ \mathsf{CL}$

[PRL 111 (2013) 141801]

- Measurement recently updated with
 - full Run 1 dataset (3 fb⁻¹)
 - improved signal selection

 μ^+

Updated search for $B_{(s)}^0 \rightarrow e^{\pm}\mu^+$ decays

[LHCb-PAPER-2017-031, arXiv:1710.04111]

ન્3500Ē ₹ 3000

22500

2000 E

1500 B1000

500

ન્3000Ē ≥ ¥2500

±2000 ⊧

≝1500 -

pipus 1000 500 E

5000

5000

5200

5200

- Preselection similar to that of $B_{(s)} \rightarrow \mu^+ \mu^-$ (except for trigger and PID)
- Sample split in two categories: with/without bremsstrahlung • recovery
- Final signal/background discrimination through BDT • (multivariate classifier) and $m_{e\mu}$
- Main background from $b\bar{b} \rightarrow e^{\pm}\mu^{\mp}X$ decays •
- $B^0 \to K^+\pi^-$ and $B^+ \to I/\psi K^+$ used as normalisation channels
- $B^0 \rightarrow K^+\pi^-$ also used to calibrate the signal BDT shape

'Impact of B $\rightarrow \mu\mu$ on New Physics Searches' Workshop

LHCb Simulation

 $5600 58 \\ m_{e^{\pm}\mu^{\mp}} [\text{MeV}/c^2]$

5600 5800 $m_{e^{\pm}\mu^{\mp}}$ [MeV/c²]

LHCb Simulation

5800

no brems, recovery

5400

with brems, recovery

5400

Updated search for $B_{(s)}^0 \rightarrow e^{\pm} \mu^{\mp}$ decays

[LHCb-PAPER-2017-031, arXiv:1710.04111]

$$\mathcal{B}(B^{0}_{(s)} \to e^{\pm}\mu^{\mp}) = \sum_{i}^{i} w^{i} \frac{\mathcal{B}^{i}_{\text{norm}}}{N^{i}_{\text{norm}}} \frac{\varepsilon^{i}_{\text{norm}}}{\varepsilon_{\text{sig}}} \frac{f_{q}}{f_{d(s)}} \times N_{B^{0}_{(s)} \to e^{\pm}\mu^{\mp}}$$
$$= \alpha_{B^{0}_{(s)}} \times N_{B^{0}_{(s)} \to e^{\pm}\mu^{\mp}},$$

- No signal found. Events in signal region consistent with the expected background
- Upper limit on $BF(B_{(s)}^0 \rightarrow e^{\pm}\mu^{\mp})$ evaluated with the CLs method:

 $BF(B_s^0 \to e^{\pm}\mu^{\mp}) < 5.4(6.3) \ 10^{-9} \ @ \ 90(95)\% \ \text{CL}$ $BF(B^0 \to e^{\pm}\mu^{\mp}) < 1.0(1.3) \ 10^{-9} \ @ \ 90(95)\% \ \text{CL}$

Best UL to date, improved by factor 2-3 since previous LHCb measurement

Summary

- Updated LHCb measurement of $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ decays combining Run 1 with 2015+2016 data
 - Improved analysis and increased dataset have led to first single-experiment observation of $B_s^0 \rightarrow \mu^+\mu^-$ decay with 7.8 σ significance $BF(B_s^0 \rightarrow \mu^+\mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$
 - No evidence of $B^0 \rightarrow \mu^+\mu^-$ in this dataset $BF(B^0 \rightarrow \mu^+\mu^-) < 3.4 \times 10^{-10}@~95\%$ CL
 - First measurement of $B_s^0 \rightarrow \mu^+\mu^-$ effective lifetime $\tau(B_s^0 \rightarrow \mu^+\mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$
- First search for $B_s \rightarrow \tau^+ \tau^-$ decays $BF(B_s^0 \rightarrow \tau^+ \tau^-) < 5.2(6.8) \times 10^{-3} @ 90(95)\%$ CL
- Updated search for LFV $B_{(s)}^0 \rightarrow e^{\pm}\mu^{\mp}$ decays. UL improved by 2-3 with respect to previous LHCb measurement

 $BF(B_s^0 \to e^{\pm}\mu^{\mp}) < 5.4(6.3) \ 10^{-9} \ @ \ 90(95)\% \ \text{CL}$ $BF(B^0 \to e^{\pm}\mu^{\mp}) < 1.0(1.3) \ 10^{-9} \ @ \ 90(95)\% \ \text{CL}$

• Work in progress on more $B_{(s)}^0$ leptonic decays

BACKUP

'Impact of $B \to \! \mu \mu$ on New Physics Searches' Workshop

$$B^0_{(s)} \rightarrow \mu^+ \mu^-$$
 mass calibration

- Mass PDFs parametrized with Crystal Ball function
- Peak values obtained from $B_s^0 \to K^+K^-$ and $B^0 \to K^+\pi^-$
- Core resolutions from power-law interpolation of resolutions from charmonium and bottomonium resonances ($\rightarrow \sim 23 \ MeV/c^2$ resolution for $B^0_{(s)} \rightarrow \mu\mu$)
- Tails from simulated events smeared to reproduce the core resolution in data

$B \rightarrow \mu\mu$ mass fit Run 1

$B \rightarrow \mu\mu$ mass fit Run 2

$BF(B \rightarrow \mu\mu)$ measurement history

A nice candidate

Event 1896231802 Run 177188 Wed, 15 Jun 2016 21:35:20 B: mass = 5379.31 MeV/c² $p_T(B) = 11407.5 \text{ MeV/c}$ BDT = 0.968545 $\tau = 2.32 \text{ ps}$ muons: $p_T(\mu^+) = 7715.4 \text{ MeV/c}$ $p_T(\mu^-) = 3910.9 \text{ MeV/c}$

The LHCb detector

LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

'Impact of $B \rightarrow \mu \mu$ on New Physics Searches' Workshop

Search for $B_{(s)}^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays

Standard Model:

- Dominated by $B_s^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\phi(\rightarrow \mu^+\mu^-)$ BF = (1.83 ± 0.18) × 10⁻⁸
- SM B⁰_s non-resonant BF ~ 3.5 × 10⁻¹⁰, dominated by B⁰_(s) → μ⁺μ⁻ γ(→ μ⁺μ⁻)

Beyond Standard Model:

 BF can be significantly enhanced, for example in MSSM: B → S(→ μ⁺μ⁻)P(→ μ⁺μ⁻), S and P sgoldstino particles
 [PRD85,077701 (2012)]

Interest also related to the evidence of $\Sigma^+ \rightarrow p\mu^+\mu^-$ by the HyperCP Collaboration consistent with existence of $P \rightarrow \mu^+\mu^-$ with M(P)=214.3 ± 0.5 MeV (PRL94, 021801 (2005), not confirmed by LHCb (LHCB-PAPER-2017-049)

S.a

Search for $B_{(s)}^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays

Signal selection:

- Dataset: 3 fb⁻¹ (Run1)
- 4 muon candidates originating from single vertex and far from the primary vertex
- J/ψ , $\psi(2S)$ and ϕ mass vetoes to remove the dominant SM resonant decays
- Multivariate classifier (B kinematic and position w.r.t primary vertex) to reject background

1611.07704, JHEP 03 (2017) 001 normalization mode $B^+ \to J/\psi(\to \mu^+\mu^-) K^+$

BF measurement:

• $B^+ \rightarrow J/\psi(\rightarrow \mu^+\mu^-) K^+$ used as normalization channel

•
$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-) = N(B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-) \times \\ \frac{\varepsilon(B^+ \to J/\psi (\to \mu^+ \mu^-) K^+) \times \mathcal{B}(B^+ \to J/\psi (\to \mu^+ \mu^-) K^+)}{\varepsilon(B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-) \times N(B^+ \to J/\psi (\to \mu^+ \mu^-) K^+)} \times \frac{f_u}{f_{d,s}}$$

 $f_s/f_d = 0.259 \pm 0.015 \ B^0/B_s^0$ production fraction [JHEP 1304 (2013) 001, LHCb-CONF-2013-011]

Search for
$$B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$$
 decays

0 events in B^0 and B_s^0 signal regions Consistent with background and (null) SM signal expectation

Set 95% CL upper limits with phase space model: $BF(B_s^0 \rightarrow \mu^+\mu^-\mu^+\mu^-) < 2.5 \times 10^{-9}$ Improved by a factor 6.4 (B_s^0) and 9.5 (B^0) $BF(B^0 \rightarrow \mu^+\mu^-\mu^+\mu^-) < 6.9 \times 10^{-10}$ compared to previous limits

Set 95% CL upper limits for MSSM model with $m_{P(S)} = 214.3 \text{ MeV} (2.5 \text{ GeV})^{(*)}$: $BF(B_s^0 \rightarrow SP \rightarrow 4\mu) < 2.2 \times 10^{-9}$ $BF(B^0 \rightarrow SP \rightarrow 4\mu) < 6.0 \times 10^{-10}$

^(*) compared to phase space model: tiny change of reconstruction efficiency due to different **p** distribution of muons