$B_s \rightarrow \mu^+ \mu^-$ Theory Status

Mikołaj Misiak University of Warsaw

- 1. Introduction
- 2. Matching calculations in the SM and beyond
- 3. Soft photon emission
- 4. Enhanced QED effects
- 5. Update of the input parameters
- 6. The SM prediction and its error budget
- 7. Comparison with the measurements
- 8. Summary

B-meson or Kaon decays occur at low energies, at scales $\mu \ll M_W$.

We pass from the full theory of electroweak interactions to an effective theory by removing the highenergy degrees of freedom, i.e. integrating out the W-boson and all the other particles with $m \sim M_W$.

 $\mathcal{L}_{\text{(full EW×QCD)}} \longrightarrow \mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QED×QCD}} \left(\begin{smallmatrix} \text{quarks} \neq t \\ \& \text{ leptons} \end{smallmatrix} \right) + N \sum_{n} C_{n}(\mu) Q_{n}$ $Q_{n} \text{ - local interaction terms (operators),} \qquad C_{n} \text{ - coupling constants (Wilson coefficients).}$ $\text{Operators (dim 6) that matter for } B_{s} \rightarrow \mu^{+}\mu^{-} \text{ read:}$ $Q_{A} = \left(\bar{b}\gamma^{\alpha}\gamma_{5}s\right) \left(\bar{\mu}\gamma_{\alpha}\gamma_{5}\mu\right) \quad \text{- the only relevant one in the SM at the LO in QED}$ $Q_{S(P)} = \left(\bar{b}\gamma_{5}s\right) \left(\bar{\mu}(\gamma_{5})\mu\right) = \frac{i(\bar{b}\gamma^{\alpha}\gamma_{5}s)\partial_{\alpha}(\bar{\mu}(\gamma_{5})\mu)}{m_{b}+m_{s}} + \underbrace{E}_{\text{vanishing by EOM}} + \underbrace{T}_{\text{total derivative}}$

Necessary non-perturbative input:

$$\langle 0|ar{b}\gamma^lpha\gamma_5 s|B_s(p)
angle \ = \ ip^lpha f_{\scriptscriptstyle B_s} \ _{\scriptscriptstyle ext{decay constant}}$$

Such a matrix element vanishes for $(\bar{b}\gamma^{\alpha}s)$ and $(\bar{b}s)$ because B_s is a pseudoscalar. It also vanishes for $(\bar{b}\sigma^{\alpha\beta}s)$ because no antisymmetric tensor can be formed from p^{α} alone. $Q_V = (\bar{b}\gamma^{\alpha}\gamma_5 s) (\bar{\mu}\gamma_{\alpha}\mu)$ gives no contribution at the LO in QED because $p^{\alpha}(\bar{\mu}\gamma_{\alpha}\mu) = \bar{\mu}\not{p}\mu = \bar{\mu}(\not{p}_{\mu^+} + \not{p}_{\mu^-})\mu = \bar{\mu}(-m_{\mu} + m_{\mu})\mu = 0.$

 Q_S gets generated in the SM via the Higgs exchange, but...—see next page.

Evaluation of the LO Wilson coefficients in the SM:

$$egin{aligned} C_A^{(0)} &= rac{1}{2} Y_0 \left(m_t^2 / M_W^2
ight), \quad Y_0(x) = rac{3 x^2}{8 (x-1)^2} \ln x + rac{x^2 - 4 x}{8 (x-1)}, \ C_S &= \mathcal{O} \left(rac{m_\mu}{M_W}
ight), \quad C_P = 0. \end{aligned}$$

Effects of C_S on the branching ratio are suppressed by $M_{B_s}^2/M_W^2 \Rightarrow$ negligible.

Thus, only C_A matters in the SM.

Evaluation of the Wilson coefficients in the Two-Higgs-Doublet Model II

Average time-integrated branching ratio:

Average time-integrated branching ratio:

In the limit of no CP-violation, mass eigenstates are CP eigenstates:

Heavier, CP-odd: $B_s^H = \frac{1}{\sqrt{2}} (B_s + \bar{B}_s)$, annihilated by $\bar{b}\gamma_5 s + \bar{s}\gamma_5 b$, $(\tau_H = 1.619(9) \text{ ps})$ Lighter, CP-even: $B_s^L = \frac{1}{\sqrt{2}} (B_s - \bar{B}_s)$, annihilated by $\bar{b}\gamma_5 s - \bar{s}\gamma_5 b$, $(\tau_L = 1.518(4) \text{ ps})$

Our interactions in this limit are all CP-even:

$$\begin{array}{l} Q_A + Q_A^{\dagger} = \left[\left(\bar{b} \gamma^{\alpha} \gamma_5 s \right) + \left(\bar{s} \gamma^{\alpha} \gamma_5 b \right) \right] \left(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu \right) \\ Q_P + Q_P^{\dagger} = \left[\left(\bar{b} \gamma_5 s \right) + \left(\bar{s} \gamma_5 b \right) \right] \left(\bar{\mu} \gamma_5 \mu \right) \end{array} \right\} \text{ annihilate } \begin{array}{l} B_s^H, \text{ produce CP-odd dimuons} \\ Q_S + Q_S^{\dagger} = \left[\left(\bar{b} \gamma_5 s \right) - \left(\bar{s} \gamma_5 b \right) \right] \left(\bar{\mu} \mu \right) \end{array} \right\} \text{ annihilates } \begin{array}{l} B_s^L, \text{ produces CP-even dimuons} \\ \text{With SM-like CP-violation - still } \begin{array}{l} Q_{A,P} \text{ annihilate } \begin{array}{l} B_s^H \text{ and } \begin{array}{l} Q_S \text{ annihilates } \begin{array}{l} B_s^L. \\ Beyond \end{array} \right\} \text{ SM - interesting time-dependent observables see arXiv:1303 3820, 1407 2771 } \end{array}$$

Beyond SM – interesting time-dependent observables, see arXiv:1303.3820, 1407.2771.

Evaluation of the NNLO QCD matching corrections in the SM

[T. Hermann, MM, M. Steinhauser, JHEP 1312 (2013) 097]

Subtleties: (i) counterterms with finite parts $\sim \bar{b}_L \not D s_L$ (ii) evanescent operators: $E_B = (\bar{b}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_5 s)(\bar{\mu}\gamma^{\sigma}\gamma^{\rho}\gamma^{\nu}\gamma_5 \mu) - 4(\bar{b}\gamma_{\alpha}\gamma_5 s)(\bar{\mu}\gamma^{\alpha}\gamma_5 \mu)$ $E_T = \text{Tr} (\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{\alpha}\gamma_5)(\bar{b}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}s)(\bar{\mu}\gamma_{\alpha}\gamma_5 \mu) + 24(\bar{b}\gamma_{\alpha}\gamma_5 s)(\bar{\mu}\gamma^{\alpha}\gamma_5 \mu)$

Renormalization of E_B

Diagrams generating E_T

Perturbative series for the Wilson coefficient at $\mu = \mu_0 \sim m_t, M_W$: $C_A(\mu_0) = C_A^{(0)}(\mu_0) + \frac{\alpha_s}{4\pi} C_A^{(1)}(\mu_0) + \left(\frac{\alpha_s}{4\pi}\right)^2 C_A^{(2)}(\mu_0) + \frac{\alpha_{em}}{4\pi} \Delta_{\rm EW} C_A(\mu_0) + \dots$

The top quark mass is $\overline{\text{MS}}$ -renormalized at μ_0 with respect to QCD, and on shell with respect to the EW interactions. Both α_s and α_{em} are $\overline{\text{MS}}$ -renormalized at μ_0 in the effective theory.

$$C_A^{(n)} = C_A^{W,(n)} + C_A^{Z,(n)}$$

To deal with single-scale tadpole integrals, we expand around y = 1 (solid lines) and around y = 0 (dashed lines), where $y = M_W/m_t$. The expansions reach $(1 - y^2)^{16}$ and y^{12} , respectively. The blue band indicates the physical region.

Matching scale dependence of $|C_A|^2$ gets significantly reduced. The plot corresponds to $\Delta_{\rm EW}C_A(\mu_0) = 0$. However, with our conventions for m_t and the global normalization, μ_0 -dependence is due to QCD only.

NNLO fit (with $\Delta_{\text{EW}} C_A(\mu_0) = 0$): $C_A = 0.4802 \left(\frac{M_t}{173.1}\right)^{1.52} \left(\frac{\alpha_s(M_Z)}{0.1184}\right)^{-0.09} + \mathcal{O}(\alpha_{em})$

 $\mathbf{7}$

Evaluation of the NLO EW matching corrections in the SM

[C. Bobeth, M. Gorbahn, E. Stamou, Phys. Rev. D 89 (2014) 034023]

Method: similar to the NNLO QCD case. Two-loop integrals with three mass scales are present.

Dependence of the final result on μ_0 in various renormalization schemes (dotted – LO, solid – NLO):

In all the four plots: no QCD corrections to C_A included, $m_t(m_t)$ w.r.t. QCD used.

OS-2 scheme: Global normalization factor in \mathcal{L}_{eff} set to $N = V_{tb}^* V_{ts} G_F^2 M_W^2 / \pi^2$ Masses at the LO renormalized on-shell w.r.t. EW interactions (including M_W in N) Plotted quantity: $-2C_A G_F^2 M_W^2 / \pi^2$ in GeV⁻² NLO EW matching correction to the BR: -3.7%

other schemes: Global normalization factor in \mathcal{L}_{eff} set to $4V_{tb}^*V_{ts} G_F/\sqrt{2}$ At the LO, $\alpha_{em}(\mu_0)$ used $\overline{\text{MS}}$: Masses and $\sin^2 \theta_W$ renormalized at μ_0 OS-1: Masses as in OS-2, $\sin^2 \theta_W$ on-shell HY (hybrid): Masses as in OS-2, $\sin^2 \theta_W$ as in $\overline{\text{MS}}$.

Radiative tail in the dimuon invariant mass spectrum

Ggreen vertical lines – experimental "blinded" windows [CMS and LHCb, Nature 522 (2015) 68] Red line – no real photon and/or radiation only from the muons. It vanishes when $m_{\mu} \rightarrow 0$. [A.J. Buras, J. Girrbach, D. Guadagnoli, G. Isidori, Eur.Phys.J. C72 (2012) 2172] [S. Jadach, B.F.L. Ward, Z. Was, Phys.Rev. D63 (2001) 113009], Eq. (204) as in PHOTOS

Blue line – remainder due to radiation from the quarks. IR-safe because B_s is neutral.

Phase-space suppressed but survives in the $m_{\mu} \rightarrow 0$ limit.

[Y.G. Aditya, K.J. Healey, A.A. Petrov, Phys.Rev. D87 (2013) 074028]
[D. Melikhov, N. Nikitin, Phys.Rev. D70 (2004) 114028]

Interference between the two contributions is negligible – suppressed both by phase-space and $m_{\mu}^2/M_{B_s}^2$.

Enhanced QED effects in $B_q \to \ell^+ \ell^-$

The leading contribution to the decay rate is proportional to $f_{B_q}^2 \sim \frac{\Lambda^3}{M_{B_q}}$.

As observed by M. Beneke, C. Bobeth and R. Szafron in arXiv:1708.09152, some of the QED corrections scale like Λ^2 :

Their explicit calculation implies that the previous results for all the $B_q \to \ell^+ \ell^-$ branching ratios need to be multiplied by

$0.993 \pm 0.004.$

Thus, despite the $\frac{M_{Bq}}{\Lambda}$ -enhancement, the effect is well within the previously estimated $\pm 1.5\%$ non-parametric uncertainty.

However, it is larger than $\pm 0.3\%$ stemming from scale-variation of the Wilson coefficient $C_A(\mu_b)$.

SM predictions for all the branching ratios $\overline{\mathcal{B}}_{q\ell} \equiv \overline{\mathcal{B}}(B_q^0 \to \ell^+ \ell^-)$

[C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou, M. Steinhauser, PRL 112 (2014) 101801]

$$egin{aligned} \overline{\mathcal{B}}_{se} imes 10^{14} &= (8.54 \pm 0.13) \, R_{tlpha} \, R_s, \ \overline{\mathcal{B}}_{s\mu} imes 10^9 &= (3.65 \pm 0.06) \, R_{tlpha} \, R_s, \ \overline{\mathcal{B}}_{s au} imes 10^7 &= (7.73 \pm 0.12) \, R_{tlpha} \, R_s, \ \overline{\mathcal{B}}_{de} imes 10^{15} &= (2.48 \pm 0.04) \, R_{tlpha} \, R_d, \ \overline{\mathcal{B}}_{d\mu} imes 10^{10} &= (1.06 \pm 0.02) \, R_{tlpha} \, R_d, \ \overline{\mathcal{B}}_{d au} imes 10^8 &= (2.22 \pm 0.04) \, R_{tlpha} \, R_d, \end{aligned}$$

where

$$\begin{split} R_{t\alpha} &= \left(\frac{M_t}{173.1~{\rm GeV}}\right)^{3.06} \left(\frac{\alpha_s(M_Z)}{0.1184}\right)^{-0.18}, \\ R_s &= \left(\frac{f_{B_s}[{\rm MeV}]}{227.7}\right)^2 \left(\frac{|V_{cb}|}{0.0424}\right)^2 \left(\frac{|V_{tb}^{\star}V_{ts}/V_{cb}|}{0.980}\right)^2 \frac{\tau_H^s~[{\rm ps}]}{1.615}, \\ R_d &= \left(\frac{f_{B_d}[{\rm MeV}]}{190.5}\right)^2 \left(\frac{|V_{tb}^{\star}V_{td}|}{0.0088}\right)^2 \frac{\tau_d^{\rm av}~[{\rm ps}]}{1.519}. \end{split}$$

Inputs from FLAG, arXiv:1607.00299, Figs. 20 and 30 (+ web page update)

12

Update of the input parameters

	2014 paper	this talk	source		
$M_t[{ m GeV}]$	173.1(9)	174.30(65)	CDF & D0, arXiv:1608.01881		
$lpha_s(M_Z)$	0.1184(7)	0.1182(12)	PDG 2016		
$f_{B_s}[{ m GeV}]$	0.2277(45)	0.2240(50)	FLAG 2016		
$f_{B_d}[{ m GeV}]$	0.1905(42)	0.1860(40)	FLAG 2016		
$ V_{cb} $	0.04240(90)	0.04089(44)	naive average excl. & incl.		
$ V_{tb}^{st}V_{ts} / V_{cb} $	0.9800(10)	0.9819(4)	derived from CKMfitter 2016		
$ V_{tb}^{*}V_{td} $	0.0088(3)	0.0087(2)	derived from CKMfitter 2016		
$ au_{H}^{s}\left[\mathrm{ps} ight]$	1.615(21)	1.619(9)	HFLAV 2017		
$ au_{H}^{d}\left[\mathrm{ps} ight]$	1.519(7)	1.518(4)	HFLAV 2017		
$\overline{\mathcal{B}}_{s\mu} imes 10^9$	3.65(23)	3.35(18)			
$\overline{\mathcal{B}}_{d\mu} imes 10^{10}$	1.06(9)	1.00(7)			

Sources o uncertair	of nties	f_{B_q}	CKM	$ au_{H}^{q}$	M_t	$lpha_s$	other parametric	non- parametric	\sum
-	$rac{\overline{\mathcal{B}}_{s\ell}}{\overline{\mathcal{B}}_{d\ell}}$	$4.5\% \\ 4.3\%$	$2.2\% \\ 4.6\%$	$0.6\% \\ 0.3\%$	$1.2\%\ 1.2\%$	$0.1\% \\ 0.1\%$	$< 0.1\% \ < 0.1\%$	$1.5\%\ 1.5\%$	$5.4\% \\ 6.7\%$

If the inclusive $|V_{cb}| = 0.04200(64)$ alone is used instead of the naive average, then $\overline{\mathcal{B}}_{s\mu} \times 10^9 = 3.54(21)$.

Comparison with the measurements

Previous averages, CMS and LHCb, Nature 522 (2015) 68: $\overline{\mathcal{B}}_{s\mu} = (2.8^{+0.7}_{-0.6}) \times 10^{-9}, \overline{\mathcal{B}}_{d\mu} = (3.9^{+1.6}_{-1.4}) \times 10^{-10}.$ New results of LHCb, PRL 118 (2017) 191801: $\overline{\mathcal{B}}_{s\mu} = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}, \overline{\mathcal{B}}_{d\mu} = (1.5^{+1.2+0.2}_{-1.0-0.1}) \times 10^{-10}.$ ATLAS in EPJC 76 (2016) 513 gives 95% C.L. bounds: $\overline{\mathcal{B}}_{s\mu} < 3.0 \times 10^{-9}$ and $\overline{\mathcal{B}}_{d\mu} < 4.2 \times 10^{-10}.$

Comparison with the measurements

Previous averages, CMS and LHCb, Nature 522 (2015) 68: $\overline{\mathcal{B}}_{s\mu} = (2.8^{+0.7}_{-0.6}) \times 10^{-9}, \overline{\mathcal{B}}_{d\mu} = (3.9^{+1.6}_{-1.4}) \times 10^{-10}.$ New results of LHCb, PRL 118 (2017) 191801: $\overline{\mathcal{B}}_{s\mu} = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}, \overline{\mathcal{B}}_{d\mu} = (1.5^{+1.2+0.2}_{-1.0-0.1}) \times 10^{-10}.$ ATLAS in EPJC 76 (2016) 513 gives 95% C.L. bounds: $\overline{\mathcal{B}}_{s\mu} < 3.0 \times 10^{-9}$ and $\overline{\mathcal{B}}_{d\mu} < 4.2 \times 10^{-10}.$

Summary

- Uncertainties in the SM predictions for $\overline{\mathcal{B}}_{q\ell}$ are dominated by the parametric ones, mainly due to the decay constants and CKM factors.
- In the $\overline{\mathcal{B}}_{s\ell}$ case, resolving the inclusive-exclusive tension in $|V_{cb}|$ would help a lot.
- The central values of the SM predictions for $\overline{\mathcal{B}}_{s\mu}$ and $\overline{\mathcal{B}}_{d\mu}$ are in good agreement with the data from LHCb, CMS and ATLAS.
- Some of the QED corrections involve non-perturbative physics beyond what is contained in the decay constants. Despite the recently found unexpected enhancement factors in such corrections, the non-parametric uncertainty can be retained at the $\pm 1.5\%$ level.