Impact of future $B_S \rightarrow \mu\mu$ measurements (on scalar new physics)

David M. Straub Universe Cluster/TUM, Munich

Advertisement (unrelated to this talk)

python-smeftrunner

- Python version of DsixTools for numerical evolution of SMEFT Wilson coefficients:
 - https://github.com/DsixTools/python-smeftrunner
 - By X. Pan & DS

WCxf

- ► New data exchange format for Wilson coefficients and complete, automatic (tree-level) SMEFT → WET matching
 - https://wcxf.github.io
 - Aebischer et al. 1712.05298

Credits (related to this talk)

Based on

" $B_s \rightarrow \mu^+ \mu^-$ as current and future probe of new physics" Wolfgang Altmannshofer, Christoph Niehoff & DS arXiv:1702.05498

flavio

All the numerics was performed with the flavio open source code

- web site: https://flav-io.github.io
- repository with numerics from our paper: https://github.com/DavidMStraub/paper-bsmumu-ans

Introduction

2 New physics in scalar operators

B_s lifetime difference

Due to $B_s \cdot \overline{B}_s$ mixing, there is a sizable lifetime difference between the two B_s mass eigenstates:

$$\begin{aligned} \tau_{B_{s}^{L}} &= \Gamma_{B_{s}^{L}}^{-1} = 1.42\,\text{ps} & \tau_{B_{s}^{H}} = \Gamma_{B_{s}^{H}}^{-1} = 1.61\,\text{ps} \\ \tau_{B_{s}} &= \Gamma_{B_{s}}^{-1} = \left[\frac{1}{2}\left(\Gamma_{B_{s}^{L}} + \Gamma_{B_{s}^{H}}\right)\right]^{-1} \end{aligned}$$

David Straub (Universe Cluster)

<ロト < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$B_s \rightarrow \mu^+ \mu^-$: time dependence

Untagged time-dependent rate De Bruyn et al. 1204.1737

$$\begin{split} \Gamma(B_{s}(t) \to \mu^{+}\mu^{-}) + \Gamma(\bar{B}_{s}(t) \to \mu^{+}\mu^{-}) &= \\ R_{H} e^{-t/\tau_{B_{s}^{H}}} + R_{L} e^{-t/\tau_{B_{s}^{L}}} \\ &= (R_{H} + R_{L}) \left[\cosh\left(\frac{y_{s}t}{\tau_{B_{s}}}\right) + A_{\Delta\Gamma} \sinh\left(\frac{y_{s}t}{\tau_{B_{s}}}\right) \right] \times e^{-t/\tau_{B_{s}}} \\ \Delta\Gamma_{s} &= \Gamma_{B_{s}^{L}} - \Gamma_{B_{s}^{H}} \qquad y_{s} = \frac{\Delta\Gamma_{s}}{2\Gamma_{s}} = 0.065 \pm 0.005 \\ A_{\Delta\Gamma}^{SM} &\equiv 1 \end{split}$$

NB: flavour tagging would give access to CP asymmetries Buras et al. 1303.3820, Fleischer et al. 1709.04735

Mass-eigenstate rate asymmetry

$$A_{\Delta\Gamma} = \frac{\Gamma(B_{s}^{H} \to \mu^{+}\mu^{-}) - \Gamma(B_{s}^{L} \to \mu^{+}\mu^{-})}{\Gamma(B_{s}^{H} \to \mu^{+}\mu^{-}) + \Gamma(B_{s}^{L} \to \mu^{+}\mu^{-})}$$

▶ 1:1 correspondence with effective lifetime

$$A_{\Delta\Gamma} = \frac{1}{y_s} \frac{(1 - y_s^2)\tau_{\mu\mu} - (1 + y_s^2)\tau_{B_s}}{2\tau_{B_s} - (1 - y_s^2)\tau_{\mu\mu}}$$

► First measurement of $\tau_{\mu\mu}$ by LHCb does not constrain $A_{\Delta\Gamma} \in [-1, 1]$ yet

$B_q ightarrow \mu^+ \mu^-$: experimental status

Unofficial world average

Future

Future scenarios

LHCb uncertainties

Naive theorists' scalings using some LHCb projections LHCb-PUB-2014-040

$$\begin{split} \sigma_{\exp}(B_s \to \mu^+ \mu^-) &= 0.19 \times 10^{-9} & \sigma_{\exp}(A_{\Delta\Gamma}) = 0.8 & (\text{Run 4}) \\ \sigma_{\exp}(B_s \to \mu^+ \mu^-) &= 0.08 \times 10^{-9} & \sigma_{\exp}(A_{\Delta\Gamma}) = 0.3 & (\text{Run 5}) \end{split}$$

Theory uncertainties

Assuming $\sigma_{f_{B_s}} \sim 1$ MeV and sub-percent lattice computation of $B \rightarrow D$ form factors ($V_{cb} \sim -V_{ts}$)

$$\sigma_{
m th}(B_{
m s}
ightarrow \mu^+ \mu^-) = 0.06 imes 10^{-9} \qquad \sigma_{
m th}(A_{\Delta\Gamma}) pprox 0$$

Introduction

2 New physics in scalar operators

Model-independent NP analysis

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \frac{e^2}{16\pi^2} \sum_{i \in [10, S, P]} \left[C_i O_i + C'_i O'_i + \text{h.c.} \right],$$

$$\begin{aligned} O_{10}^{(\prime)} &= (\bar{s}_{L(R)} \gamma_{\rho} b_{L(R)}) (\bar{\mu} \gamma^{\rho} \mu) \\ O_{S}^{(\prime)} &= m_{b} (\bar{s}_{L(R)} b_{R(L)}) (\bar{\mu} \mu) \\ O_{P}^{(\prime)} &= m_{b} (\bar{s}_{L(R)} b_{R(L)}) (\bar{\mu} \gamma_{5} \mu) \end{aligned}$$

Not all independent, since SMEFT dimension-6 relations imply Alonso et al. 1407.7044, Aebischer:2015fzz

$$C_{S} = -C_{P} = rac{v^{2}}{4}C_{ledq}^{jj32*}$$
 $C_{S}' = C_{P}' = rac{v^{2}}{4}C_{ledq}^{jj23}$

Modification of observables

$$\begin{split} \mathsf{BR}(B_{s} \to \mu^{+}\mu^{-}) &= \frac{G_{F}^{2}\alpha^{2}}{16\pi^{3}} \left| V_{ts}V_{tb}^{*} \right|^{2} f_{B_{s}}^{2} \tau_{B_{s}} m_{B_{s}} m_{\mu}^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}}} \left| C_{10}^{\mathsf{SM}} \right|^{2} \left(|\mathbf{P}|^{2} + |\mathbf{S}|^{2} \right) \\ A_{\Delta\Gamma} &= \frac{|\mathbf{P}|^{2} \cos(2\boldsymbol{\varphi}_{P} - \boldsymbol{\varphi}_{s}^{\mathsf{NP}}) - |\mathbf{S}|^{2} \cos(2\boldsymbol{\varphi}_{S} - \boldsymbol{\varphi}_{s}^{\mathsf{NP}})}{|\mathbf{P}|^{2} + |\mathbf{S}|^{2}} \end{split}$$

$$\begin{split} P &= \frac{C_{10} - C_{10}'}{C_{10}^{\text{SM}}} + \frac{M_{B_s}^2}{2m_{\mu}} \frac{m_b}{m_b + m_s} \left(\frac{C_P - C_P'}{C_{10}^{\text{SM}}}\right) \\ S &= \sqrt{1 - 4\frac{m_{\mu}^2}{M_{B_s}^2}} \frac{M_{B_s}^2}{2m_{\mu}} \frac{m_b}{m_b + m_s} \left(\frac{C_S - C_S'}{C_{10}^{\text{SM}}}\right), \end{split}$$

 $A_{\Delta\Gamma}$ probes new physics in (pseudo-)scalar operators

At tree level, 3 possibilities: neutral scalar; vector leptoquarks

MFV MSSM

▶ Contributions to C_{S,P} are generated by H⁰ and A⁰ exchange

Dominant contribution: chargino-stop loop

$$C_{\rm S}\simeq -C_{\rm P}\propto rac{\mu A_{\rm t}}{m_{\tilde{t}}^2}rac{m_{B_{\rm s}}m_{\mu}}{m_{A}^2} {
m tan}^3 m eta$$

- Present even for degenerate spectrum & flavour-blind SUSY breaking terms
- Potentially huge enhancement for large tan β

MFV MSSM: observables

$$C_{\rm S} = -C_{\rm P}. \ {\rm S} \simeq 1 - {\rm P} \equiv {\rm A}$$

$$\begin{array}{lll} \displaystyle \frac{\overline{\mathrm{BR}}(B_s \to \mu^+ \mu^-)}{\overline{\mathrm{BR}}(B_s \to \mu^+ \mu^-)_{\mathrm{SM}}} & = & (1-A)^2 + A^2 - \frac{y_s}{1+y_s} 2A^2 \geq \frac{1}{2} \\ \\ & A_{\Delta\Gamma} & = & \frac{(1-A)^2 - A^2}{(1-A)^2 + A^2} \end{array}$$

• For A = 1, BR is unaffacted but $A_{\Delta\Gamma}$ changes sign!

Constraint on $C_S = -C_P$

Complementarity with Higgs searches

- ► $B_s \rightarrow \mu^+ \mu^-$ is complementary to Higgs physics $(H/A \rightarrow \tau^+ \tau^-)$
- Two disjoint solutions corresponding to different overall signs of the amplitude. How to disentangle?

Complementarity with Higgs searches

► A_{ΔΓ} can exclude (or confirm??) second solution

General constraint on real $C_{S,P}^{(\prime)}$

General constraint on real $C_{S,P}^{(\prime)}$

General constraint on real $C_{S,P}^{(\prime)}$

Bayesian fit of complex $C_{S,P}^{(\prime)}$

Leptoquarks: the U_1 example

$$\mathcal{L}_{U_1} = \hat{\lambda}_L^{ij} \, \left(\bar{Q}_L^i \, \gamma_\mu \, L_L^j \right) U_1^\mu + \hat{\lambda}_R^{ij} \, \left(\bar{d}_R^i \, \gamma_\mu \, e_R^j \right) U_1^\mu + \text{h.c.}$$

$$\begin{array}{lll} C_9^{\text{NP}} & -\frac{1}{2}\mathcal{N}\lambda_L^{s\mu}\lambda_L^{b\mu\,*} \\ C_9' & -\frac{1}{2}\mathcal{N}\lambda_R^{s\mu}\lambda_R^{b\mu\,*} \\ C_{10}^{\text{NP}} & \frac{1}{2}\mathcal{N}\lambda_L^{s\mu}\lambda_L^{b\mu\,*} \\ C_{10}' & -\frac{1}{2}\mathcal{N}\lambda_R^{s\mu}\lambda_R^{b\mu\,*} \\ C_S = -C_P & \mathcal{N}\lambda_L^{s\mu}\lambda_R^{b\mu\,*} m_b^{-1} \\ C_S' = C_P' & \mathcal{N}\lambda_R^{s\mu}\lambda_R^{b\mu\,*} m_b^{-1} \end{array}$$

Leptoquarks: the U_1 example

$$\mathcal{L}_{U_1} = \hat{\lambda}_L^{ij} \, \left(\bar{Q}_L^i \, \gamma_\mu \, L_L^j \right) U_1^\mu + \hat{\lambda}_R^{ij} \, \left(\bar{d}_R^i \, \gamma_\mu \, e_R^j \right) U_1^\mu + \text{h.c.}$$

NB: λ_L employed in simultaneous explanation of $b \to s\mu\mu \& b \to c\tau\nu$ anomalies, see e.g. Barbieri et al. 1512.01560, Buttazzo et al. 1706.07808

David Straub (Universe Cluster)

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < ○ < ○</p>

Constraint on LQ parameter space

Scenario with $C_{S}^{\prime}=C_{P}^{\prime}=$ 0, λ_{L} chosen to explain b
ightarrow s $\mu\mu$ anomalies

Conclusions

- BR(B_s → µ⁺µ⁻) is exceptionally sensitive to NP in scalar operators, but leaves an ambiguity
- ► A_{ΔΓ} can resolve this ambiguity and exclude scalar NP overcompensating the SM contribution
- $\blacktriangleright\,$ Constraints are complementary to direct searches (e.g. A $\rightarrow \tau^+\tau^-$ in the MSSM)