
Enhanced Data Caching for 
multi-process workflows

David Clark, Peter Van Gemmeren

Argonne National Lab



Outline

• Motivation

• Preloading and Retaining Clusters

• MaxVirtualSize Usage

• Implementation Details



Motivation

• With the change to Athena MT, ATLAS will be transitioning to a multi-
threading workflow

• Athena MT will have multiple threads running different calculations 
on the same data and running several events in-flight

• Due to the random nature of the events, they can take different 
amounts of time to process

• Since Athena reads data on-demand, this can lead to out of sequence 
reads



Motivation cont.

• Cache clearing
• Any thread reading a branch from the next cluster will cause the tree cache to be 

cleared, even as other threads are still processing that data
• All branches that will read previous entries, that are not yet loaded into memory, 

will cause disk reads.
• And if they call LoadTree(), this will cause cache thrashing. Without LoadTree this will result in 

a small disk read.

• Single branch backward reads
• Branches keep the current basket in memory. But, if a branch tries to read an 

entry in a previous basket, it is forced to reload that basket to memory
• If the MaxVirutalSize of the tree is set, it will keep that many bytes in memory. But once the 

tree reaches the max size, DropBuffers is called and all of the previous baskets are removed 
from memory and there is a chance other baskets will be needed again

• Remainder branch reads in trailing baskets
• Clusters may have multiple baskets and often times the second basket is small
• If one processor triggers a cache flush and loads the next cluster, some of the 

trailing baskets may not have been read into memory yet, and will result in a 
small disk read.



Disk

Already in memory

Read Calls Tbaskets Read to memory

GetEntry(0) post-change
MaxVirtualSize<0

0-59 60-99
preloaded

100-159 160-199 200-259

pre-change

GetEntry(60) 0-59
retained

60-99 100-159 160-199 200-259

GetEntry(59) 0-59 60-99 100-159 160-199 200-259

extra

GetEntry(61) 0-59 60-99 100-159 160-199 200-259

extra

GetEntry(100) 0-59 60-99 100-159 160-199 200-259

Preloading and Retaining Clusters

• Branches will load an entire clusters into memory

• Branches will keep the current and previous cluster in memory



fMaxVirtualSize

GetMaxVirtualSize SetMaxVirtualSize DropBuffers MemoryFull

TTree::LoadBaskets

TProofLite
TProofPlayer

TChain

TBranch::GetFreshBasket

TBranch::LoadBaskets TBranch::GetBasket

TBranch::GetEntry
TTreeCloner

TTreeSQL
TLeafC

MaxVirtualSize Usage



MaxVirtualSize Usage cont.

• SetMaxVirtualSize
• TProofLite & TProofPlayer sets maxvirtualsize to 0 then drops all the baskets 

from memory

• TChain sets the maxvirtualsize of a fTree when it loading the tree

• LoadBasket sets the MaxVirtualSize, but is for random access of entries

• DropBuffers
• Called to remove buffers in memory until the total bytes in memory is less 

than fMaxVirtualSize.

• fMaxVirtualSize being negative would be equivalent to it being set to 0

• GetBasket
• Retains the same functionality



Preloading Entire Clusters

• In GetEntry, when a new basket is going to be loaded, the rest of the 
cluster is also loaded

• ClusterIterator allows for easy computation of the beginning of the 
next cluster

if (fTree->GetMaxVirtualSize() < 0) {

TTree::TClusterIterator clusterIterator = 

fTree>GetClusterIterator(entry);

clusterIterator.Next();

Int_t nextClusterEntry = clusterIterator.GetNextEntry();

for (Int_t i = fReadBasket; i < fMaxBaskets && fBasketEntry[i] < nextClusterEntry; i++) {

GetBasket(i);

}

}



GetFreshCluster

• Added GetFreshCluster function to Tbranch

• Responsible for return new basket and cleaning up old clusters

- basket = GetFreshBasket();

+ basket = (fTree->GetMaxVirtualSize() < 0) ? GetFreshCluster() : GetFreshBasket();

+ TBasket *GetFreshCluster();

- ClassDef(TBranch,12); //Branch descriptor

+ ClassDef(TBranch,13); //Branch descriptor

• Use new function to get fresh baskets in GetBasket



Finding Entry

• Uses ClusterIterator to find cluster to be flushed from memory – this 
is the cluster that is two back from the current one

+ TTree::TClusterIterator iter = 

fTree->GetClusterIterator(fBasketEntry[fReadBasket]);

+ if (iter.GetStartEntry() == 0) return fTree->CreateBasket(this);

+ TTree::TClusterIterator prevIter = 

fTree->GetClusterIterator(iter.GetStartEntry() - 1);

+ if (prevIter.GetStartEntry() == 0) return fTree->CreateBasket(this);

+ Int_t entryToFlush = 

fTree->GetClusterIterator(prevIter.GetStartEntry() - 1)

.GetStartEntry();



Finding Basket

• Once we know the entry index to start clearing from memory, we 
need the basket number

• Since the number of baskets per cluster should be small, just iterating 
backwards is efficient

+ Int_t basketToFlush = fReadBasket;

+ while (fBasketEntry[basketToFlush] != entryToFlush) {

+ basketToFlush--;

+ if (basketToFlush < 0) {

+ return fTree->CreateBasket(this);

+ }

+ }



Reusing Basket

• Reuses the first basket that needs to be flushed, if it exists, otherwise 
create a new one

+ TBasket *basket = (TBasket*)fBaskets.UncheckedAt(basketToFlush);

+ if (basket) {

+ fBaskets.AddAt(0,basketToFlush);

+ --fNBaskets;

+ } else {

+ basket = fTree->CreateBasket(this);

+ }



Clearing the Cluster

• Clears the rest of the baskets and recalculates the last basket in 
memory

+ while (fBasketEntry[basketToFlush] < prevIter.GetNextEntry()) {

+ fBaskets.AddAt(0, basketToFlush);

+ --fNBaskets;

+ ++basketToFlush;

+ }

+ fBaskets.SetLast(-1);

+ return basket;

• It would be ideal to reuse these baskets for other baskets in the new 
cluster

• This would require GetFreshCluster to go beyond its current scope

• For the cases where each cluster only contains a single basket, all the 
baskets will be reused 



Results

• Reading the first 1000 (~1 GB) entries on test on dummy tree 
consisting of 2000 branches

• Every read has a 2.5% chance of reading 10 entries back from the 
current entry or a 2.5% chance of reading 10 entries forward

MaxVirtualSize Bytes Read Read Calls Uncached Reads

0 1507824429 31102 31012

280MB 1394073580 24877 24787

600MB 1236320410 8905 8815

-1 1131937563 90 0


