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Overview

An introduction to b-tagging with ATLAS and associated experimental and theory issues...

Overview

b-hadrons: b-tagging relies on the unique properties of the b-hadrons, why are they
special?

Experimental Signature: How do b-jets look to the ATLAS detector?

Algorithms: How can we exploit these features to “tag” b-jets?

Simulation: To what extent do we rely on simulation to understand b-tagging and
how accurate is it?

Calibration: How do we understand the performance of a b-tagging algorithm in
data?

Jet Labelling Conventions

b-jet: Jets containing a b-hadron

c-jet: Jets containing a c-hadron but no b-hadron

Light flavour jet: Jets containing no b or c-hadrons (originating from u, d , s quark
and gluon fragmentation)
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Properties of b-hadrons

The tagging of b-jets relies upon the unique properties of the b-hadrons:

Lifetime: Long enough to lead to a measureable decay length (around 5mm for a 50
GeV boost)

Mass: Largest masses of any hadrons, leading to high decay product multiplicities
(average of 5 charged particles per decay)

Fragmentation: Much harder than jets initiated by other parton species (b-hadrons
carry around 75% of jet energy, on average)
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Properties of c-hadrons

Properties of the c-hadrons allow “c-tagging”, but also very relevent for b-tagging
given B → D decay chains and the rejection of c-initiated jets:

Lifetime: Shorter than the b-hadrons by around a factor of 2-3, still enough for
measureable decay length (around 1-3mm for a 50 GeV boost)

Mass: Around 3× lower than b-hadrons (mean of ≈ 2 charged particles per decay)

Fragmentation: Softer than b-jets, but still harder than jets initiated by light parton
species (c-hadrons carry around 55% of jet energy, on average)
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Anatomy of a “typical” b-jet

A typical b-hadron decay chain (∼ 90%) involves a decay to a c-hadron

b-hadron decay vertex • displaced from the primary pp vertex •
c-hadron decay vertex • further displaced, often close to b-hadron flight axis - - -

Tracks · · · from secondary and tertiary vertices with large impact parameters with
respect to the primary pp vertex
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The ATLAS Detector

General purpose detector, well suited to studying heavy flavour jets

Inner Detector (ID): Silicon Pixels and Strips (SCT) with Transition Radiation
Tracker (TRT) |η| < 2.5 and (new for Run 2) Insertable B-Layer (IBL)

LAr EM Calorimeter: Highly granular + longitudinally segmented (3-4 layers)

Had. Calorimeter: Plastic scintillator tiles with iron absorber (LAr in fwd. region)

Muon Spectrometer (MS): Triggering |η| < 2.4 and Precision Tracking |η| < 2.7

Jet Energy Resolution: Typically σE/E ≈ 50%/
√

E( GeV)⊕ 3%

Track IP Resolution: σd0 ≈ 60 µm and σz0 ≈ 140 µm for pT = 1 GeV (with IBL)
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Exploiting b-hadron properties: 1 - Track Impact Parameters (IP)

The signed IPs of tracks associated to jets are powerful jet flavour distriminants:

Exploit “sign” of impact parameter: positive if track point of closest approach to PV
is downstream of plane defined by the PV and jet axis

Tracks from b-hadrons tend to have highly significant (IP/σIP) positive IPs, while
most tracks from the PV have a narrow, symmetric distribution

X Very inclusive and highly efficient

7 Relies upon accurate measurement of jet axis, sensitive to “mis-tag” high IP tracks
from V 0 or material interactions, IP/σIP difficult to model in detector simulation

Track signed d0 significance (Good)
20 10 0 10 20 30 40

A
rb

it
ra

ry
 u

n
it
s

6
10

5
10

4
10

3
10

2
10

1
10

b jets

c jets
Lightflavour jets

ATLAS Simulation Preliminary

t=13 TeV, ts

)
u

/P
b

IP3D log(P
20 10 0 10 20 30 40 50

A
rb

it
ra

ry
 u

n
it
s

6
10

5
10

4
10

3
10

2
10

1
10

1

10

b jets

c jets

Lightflavour jets

ATLAS Simulation Preliminary

t=13 TeV, ts

Left: Transverse IP significance distribution Right: likelihood ratio discriminant based on 3D IPs of tracks

Heavy Flavour Jet Tagging with ATLAS 6 / 30



Exploiting b-hadron properties: 1 - Track Impact Parameters (IP)

For a b-jets, if you find one high IP track within a jet, you’re more likely to find
another... BUT this is not the case for light jets! How can we exploit this?

Given the many tracks in a jet, exploiting these correlations is problem of very high
dimensionality! Most IP taggers typically ignore such correlations...

Machine learning techniques such as “Recurrent Neural Networks” (RNN) can learn
sequential dependencies of arbitrary-length sequences, well suited to this problem

New (for 2017) ATLAS RNN IP algorithms outperform baseline IP taggers, having
(expected to have) learnt to exploit these correlations
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Exploiting b-hadron properties: 2 - Secondary Vertices (SV)

Exploit expectation of a secondary vertex from either b or c-hadron decays:

Attempt to reconstruct a secondary vertex from high IP tracks associated with jet

Use invariant mass of tracks at SV to discriminate b or c-hadron decay vertices from
V 0 decays or material interations

Further exploit hard b-jet fragmentation, SV should carry a large fraction of jet energy

X SV found in up to ≈ 80% of b-jets but only a few % of light flavour jets

7 Degraded light jet rejection as jet pT increases, careful considerations to mitigate
“tagging” of material interactions required
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Exploiting b-hadron properties: 3 - Decay Chain (JetFitter algorithm)

Exploit common occurance of cascade decay chain; b-hadron → c-hadron:

Use Kalman filter to search for common axis on which three vertices lie: primary (pp)
→ secondary (b-hadron) → tertiary (c-hadron)

Can then look for “1 track vertices” with decay chain axis

X Addition of 1 track vertices improves efficiency, constraint to decay chain axis
improves separation power of SV based discriminants

7 Degraded performance for c/b-hadron vertices as jet pT increases, high fake rate
for 1 track vertices (increases light jet “mis-tag” rate)

 (JF)
1trk vertices

N
0 1 2 3 4 5 6

A
rb

it
ra

ry
 u

n
it
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b jets

c jets

Lightflavour jets

ATLAS Simulation Preliminary

t=13 TeV, ts

 (JF)
2trk vertices≥

N
0 1 2 3 4 5

A
rb

it
ra

ry
 u

n
it
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

b jets

c jets

Lightflavour jets

ATLAS Simulation Preliminary

t=13 TeV, ts

 [GeV]
T

Jet p
50 100 150 200 250 300 350 400

J
e
tF

it
te

r 
e
ff
ic

ie
n
c
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b jets 2 tracks≥b jets 

c jets 2 tracks≥c jets 

Light jets 2 tracks≥Light jets 

ATLAS Simulation Preliminary

t=13 TeV, ts

Left: Multiplicity of 1 track vertices Centre: Multiplicity of 2+ track vertices Right: Chain reco. efficiency vs. jet pT

Heavy Flavour Jet Tagging with ATLAS 9 / 30



Exploiting b-hadron properties: 4 - Muons (Soft Muon Tagger)

Exploit the large branching fractions for the semi-leptonic c/b hadron decays and the
clean “muon-in-jet” experimental signature:

Expect much higher rate of muons within b/c-jets, relative to light flavour jets, due
to the decays B → µνX and B → DX → µνX ′ (B of around 10% each)

X Complementary to SV and IP based taggers, different c/b hadron properties
exploited and ATLAS detector components employed

7 Light flavour jet backgrounds from muons produced in π/K decays in flight
difficult to model in simulation
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Exploiting b-hadron properties: 5 - Bring Everything Together

Combine approaches together to exploit the full topology of a b-jet and mitigate the
shortcomings of the individual methods:

Use the output of the three basic approaches as input to a boosted decision tree
(BDT) to build a single multivariate discriminant

X Benefit from the advantages of all basic techniques/algorithms to build a single
very powerful discriminant

7 Complex sensitivity to convolution of all detector and physics modelling issues (see
later), relies strongly on“calibration” in data (as do “basic” algorithms)

MV2c10 BDT Output

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

A
rb

it
ra

ry
 u

n
it
s

3−10

2−10

1−10

1

10

ATLAS  Simulation Preliminary

t = 13 TeV, ts b jets

c jets

Lightflavour jets

Combined BDT discriminant ↑

BDT Cut Value b-jet Efficiency [%] c-jet Rejection Light-jet Rejection τ Rejection
0.9349 60 34 1538 184
0.8244 70 12 381 55
0.6459 77 6 134 22
0.1758 85 3.1 33 8.2

Simplest way to define a “b-tagged” jet is through
definition of “fixed cut” working points, with
characteristic b-jet eff. vs. c and light flavour jet rej.
shown above

Choice of working point chosen driven by needs of
individual physics analyses...
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Exploiting b-hadron properties: 5 - Bring Everything Together

The training of a multivariate discriminant offers great flexibility for final application
to physics analyses:

For example, the light vs. c-jet rejection can be easily tuned to suit analysis needs
through varying flavour composition of the training sample
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What about more sophisticated machine learning techniques?

Modern “Deep Learning” neural network techniques offer more flexibilty and can
potentially better exploit input correlations compared to a BDT

ATLAS b-taggers based on deep learning available for LHC 2017 run (see
ATL-PHYS-PUB-2017-013 and ATL-PHYS-PUB-2017-003)
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b-tagging for boosted H → bb̄: Introduction

What about b-tagging large-R (∼ 1.0) jets with expected substructure such as a
boosted H, Z ,X → bb̄ decay?

In a boosted H → bb̄ system, as the angular separation of the b-jets tends to the
small-R (R = 0.4) jet radius, the reconstruction and b-tagging of two “isolated”
small-R jets becomes inefficienct

The H → bb̄ system can be reconstructed as a large-R (R = 1.0) jet with smaller
radius (e.g. R = 0.2) “subjets” (track jets) identified within

Standard b-tagging can then be performed on tracks associated with these subjets,
ask for a single or double b-tag from the system to purify X → bb̄ large-R jet sample

R=1.0 Trimmed Calo Jet

R=0.2 Track Jet
R=0.2 Track Jet

C

hBeamline

Primary Vertex

BB

Double b-tagging performance depends on technique used to identify the subjets...
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b-tagging for boosted H → bb̄: Baseline ATLAS Method

Reconstruct anti-kt R = 1.0 calorimeter jet and apply “jet trimming”† to discard soft
component with a subjet radius of Rsubjet = 0.2 and a minimum pT fraction of 5%

Associate anti-kt R = 0.2 track jets with R = 1.0 calorimeter jets using “ghost
association”‡ and perform “standard” b-tagging on track jets (see below)

H → bb̄ “tagger” then built by requiring additional selection based on the invariant
mass of the “trimmed” R = 1.0 jet
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Left: H → bb̄ tag efficiency vs. multi-jet rej. Right: H → bb̄ tag efficiency vs. hadronic top decay rej.

† D. Krohn, J. Thaler and L. T. Wang, “Jet Trimming”, JHEP 1002 (2010) 084 (arXiv:0912.1342)

‡ M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas,” Phys. Lett. B 659 (2008) 119 (arXiv:0707.1378)
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b-tagging for boosted H → bb̄: Alternative Methods

Performance of baseline method degrades for very high pH
T , alternative methods to

identify subjets have also been investigated:

Variable Radius Track Jets: jet radius varies as a function of jet pT as R ∝ p−1
T

Exclusive-kt : Varient of kt algorithm, will cluster subjets until all protojet separations
are above a given threshold or fixed number of jets is obtained

Calo. subjets in C.O.M. frame: Boost jet constituents into to the large-R jet rest
frame, then cluster subjets with EECambridge algorithm†
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† Y. L. Dokshitzer et al., “Better jet clustering algorithms”, JHEP 9708 (1997) 001 (hep-ph/9707323)
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Modelling of heavy flavour jets: Introduction

Performance of b-tagging algorithms in MC simulation depends on modelling of heavy
flavour hadron production jets, particularly the following common aspects/issues:

Hadron Masses and Lifetimes: Values in MC generators do not always represent
current “best knowledge” or PDG/HFLAV combinations

Hadron Decays: Choice of decay form factors, branching fraction values for exclusive
decays (as above), re-production of inclusive branching fractions (e.g. B → µX )

Fragmentation: Relative fractions of hadron species and modelling of fragmentation
function

Gluon Splitting: Modelling at low ∆Rqq̄ and fraction of g → bb̄ relative to g → cc̄

Detailed survey of heavy flavour hadron production modelling in common MC
generators performed by ATLAS in ATL-PHYS-PUB-2014-008

Compare a number of b/c-hadron observables in tt̄ events generated with four
common MC event generators:

Pythia8(.175) (w./w.o. EvtGen), Pythia6(.427), Herwig++(2.6.3a), HERWIG(6.520)
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Modelling of heavy flavour jets: Fragmentation Fractions

Properties exploited by b-tagging (e.g. lifetime and ch. mult.) vary significantly
among c/b-hadron species, crucial to accurately model the relative production rates:

Weakly decaying B hadrons
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Composition of b-baryon population
rather varied and large spread in Λb
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Weakly decaying C hadrons
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c-hadron fragmentation fractions

Λ+
c fraction most varied (most difficult

to measure), generally good agreement
in D0 fraction (excl. HERWIG)

General agreement to within 10% for most copiously produced b/c-hadrons, though
variations at this level can certainly noticeably affect b-tagging efficiencies
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Modelling of heavy flavour jets: Fragmentation Functions

The “hardness” of heavy flavour quark fragmentation is exploited by b-tagging
algorithms (e.g. SV energy fraction variables), accurate modelling crucial:
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Several noticable discrepencies, how reliable are conclusions based on data/MC
comparisons made with e+e− data/observables transfered to the LHC environment?
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Modelling of heavy flavour jets: Hadron Decays

b-tagging algorithms are sensitive to “inclusive” modelling of decays, such as the
number of charged particles produced in c/b-hadron decays:
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D0 meson charged decay multiplicity

Can impact b-tagging efficiency by modifying the rate of SV finding and JetFitter
decay chain identification

The multiplicities vary between generators by as much as
∼ 20% for b-hadrons and ∼ 15% for c-hadrons!
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Modelling of heavy flavour jets: c/b-hadron semi-leptonic fractions

Muon-in-jet (SMT) based tagging sensitive to inclusive rate of B/D → e−ν̄eX

 semileptonic fraction0B
0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

 0.0003 ) ±PYTHIA8  (0.1045 

 0.0003 ) ±Pythia6  (0.1050 

 0.0003 ) ±HERWIG  (0.0962 

 0.0003 ) ±Herwig++  (0.0999 

 0.0007 ) ±EvtGen 2.0  (0.0934 

 0.0002 ) ±EvtGen ATLAS .dec  (0.1039 

 0.0028)±PDG (0.1033 

 EvtGen (0.0949)

ATLAS Simulation Preliminary

 semileptonic fraction+B
0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

 0.0003 ) ±PYTHIA8  (0.1122 

 0.0003 ) ±Pythia6  (0.1054 

 0.0003 ) ±HERWIG  (0.0956 

 0.0004 ) ±Herwig++  (0.1088 

 0.0008 ) ±EvtGen 2.0  (0.0968 

 0.0002 ) ±EvtGen ATLAS .dec  (0.1108 

 0.0028)±PDG (0.1099 

 EvtGen (0.0980)

ATLAS Simulation Preliminary

 semileptonic fraction0D
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

 0.0003 ) ±PYTHIA8  (0.0680 

 0.0003 ) ±Pythia6  (0.0767 

 0.0004 ) ±HERWIG  (0.0810 

 0.0003 ) ±Herwig++  (0.0671 

 0.0003 ) ±EvtGen 2.0  (0.1072 

 0.0002 ) ±EvtGen ATLAS .dec  (0.0678 

 0.0011)±PDG (0.0649 

 EvtGen (0.1071)

ATLAS Simulation Preliminary

 semileptonic fraction+D
0.1 0.2 0.3 0.4 0.5 0.6 0.7

 0.0006 ) ±PYTHIA8  (0.1697 

 0.0007 ) ±Pythia6  (0.1725 

 0.0007 ) ±HERWIG  (0.1260 

 0.0007 ) ±Herwig++  (0.1606 

 0.0007 ) ±EvtGen 2.0  (0.2009 

 0.0004 ) ±EvtGen ATLAS .dec  (0.1697 

 0.0030)±PDG (0.1607 

 EvtGen (0.2009)

ATLAS Simulation Preliminary

EvtGen values particularly different to those from the PDG (2012)
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Modelling of heavy flavour jets: c-hadron lifetimes

General agreement among generator and PDG values for weakly decaying c-hadrons

 [mm]τ c0D
0.12 0.125 0.13 0.135 0.14 0.145

 0.0001 ) ±PYTHIA8  (0.1230 

 0.0001 ) ±Pythia6  (0.1246 

 0.0002 ) ±HERWIG  (0.1238 

 0.0001 ) ±Herwig++  (0.1231 

 0.0001 ) ±EvtGen 2.0  (0.1229 

 0.0004)±PDG (0.1230 

 EvtGen (0.1230)

ATLAS Simulation Preliminary

 [mm]τ c+D
0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

 0.0005 ) ±PYTHIA8  (0.3115 

 0.0005 ) ±Pythia6  (0.3161 

 0.0006 ) ±HERWIG  (0.3150 

 0.0005 ) ±Herwig++  (0.3116 

 0.0003 ) ±EvtGen 2.0  (0.3114 

 0.0021)±PDG (0.3120 

 EvtGen (0.3118)

ATLAS Simulation Preliminary

 [mm]τ c+
sD

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

 0.0004 ) ±PYTHIA8  (0.1498 

 0.0004 ) ±Pythia6  (0.1400 

 0.0004 ) ±HERWIG  (0.1402 

 0.0005 ) ±Herwig++  (0.1494 

 0.0003 ) ±EvtGen 2.0  (0.1499 

 0.0021)±PDG (0.1500 

 EvtGen (0.1499)

ATLAS Simulation Preliminary

 [mm]τ c+
cΛ

0 0.05 0.1 0.15 0.2 0.25

 0.0002 ) ±PYTHIA8  (0.0597 

 0.0002 ) ±Pythia6  (0.0621 

 0.0002 ) ±HERWIG  (0.0614 

 0.0002 ) ±Herwig++  (0.0595 

 0.0002 ) ±EvtGen 2.0  (0.0596 

 0.0018)±PDG (0.0600 

 EvtGen (0.0598)

ATLAS Simulation Preliminary

Only notable discrepency in D+
s value used by (Fortran) HERWIG and Pythia6
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Modelling of heavy flavour jets: b-hadron lifetimes

Much more discrepency in generator and PDG values for weakly decaying b-hadrons

 [mm]τ c0B
0.4 0.45 0.5 0.55 0.6 0.65 0.7

 0.0005 ) ±PYTHIA8  (0.4591 

 0.0005 ) ±Pythia6  (0.4676 

 0.0005 ) ±HERWIG  (0.4829 

 0.0005 ) ±Herwig++  (0.4608 

 0.0003 ) ±EvtGen 2.0  (0.4580 

 0.0021)±PDG (0.4557 

 EvtGen (0.4555)

ATLAS Simulation Preliminary

 [mm]τ c+B
0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64

 0.0005 ) ±PYTHIA8  (0.4904 

 0.0005 ) ±Pythia6  (0.4620 

 0.0005 ) ±HERWIG  (0.4942 

 0.0005 ) ±Herwig++  (0.5016 

 0.0004 ) ±EvtGen 2.0  (0.4919 

 0.0024)±PDG (0.4923 

 EvtGen (0.4920)

ATLAS Simulation Preliminary

 [mm]τ c0
sB

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

 0.0010 ) ±PYTHIA8  (0.4369 

 0.0012 ) ±Pythia6  (0.4820 

 0.0010 ) ±HERWIG  (0.4595 

 0.0010 ) ±Herwig++  (0.4427 

 0.0007 ) ±EvtGen 2.0  (0.4395 

 0.0045)±PDG (0.4491 

 EvtGen (0.4415)

ATLAS Simulation Preliminary

 [mm]τ cbΛ
0.3 0.4 0.5 0.6 0.7 0.8

 0.0013 ) ±PYTHIA8  (0.3682 

 0.0010 ) ±Pythia6  (0.3420 

 0.0008 ) ±HERWIG  (0.2818 

 0.0009 ) ±Herwig++  (0.3686 

 0.0010 ) ±EvtGen 2.0  (0.3968 

 0.0096)±PDG (0.4275 

 EvtGen (0.4272)

ATLAS Simulation Preliminary

Λb lifetime particularly problematic in “plain” generators (without EvtGen)
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Modelling of heavy flavour jets: g → bb̄ splitting

The region of small-angle bb̄ pair production (dominated by g → bb̄) is particularly
sensitive to the details of the various calculations...

Important for modelling of b-tagging since tagging efficiency for jets containing one
or two b(c)-hadrons is significantly different!

Highlighted in measurements† of proxy observables (ang. separation between
b → J/ψ(µ+µ−)X and b̄ → µX ′) for the bb̄ ang. separation in inclusive production
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Much variation among MC generators with different approaches to model g → bb̄
† ATLAS Collaboration, arXiv:1705.03374
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Detector Simulation Modelling Issues

In addition to b/c-hadron simulation, performance of b-tagging in MC also depends
on the simulated performance of the ATLAS detector, which is also not perfect...

Example 1: Material - Radius of hadronic interaction vertices reconstructed in the inner tracker detectors in data and MC

simulation, sensitive to missing or mis-modelled material in the detector simulation
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Example 2: Alignment - Mean residual in transverse IP Consequence - Difference in track transverse IP resolution in data
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How can these modelling issues affect b-tagging?

Two (worst I could find) examples of disciminant distributions data and simulation,
where both MC generator and detector simulation effects can contribute:
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convolution of all modelling issues
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If one were to make a “cut” to select a purified sample of b-jets, the efficiency and c
and light jet “mis-tag” rates would differ in data and simulation! So how can we

reliablly use b-tagging with MC events?
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Calibration - Introduction

Solution is to perform a “calibration” of the b-tagging efficiency; measure the
efficiency in data and correct MC efficiency accordingly

Crucial to “calibrate” performance not only for b-jets, but also c and light flavour jets
(which are often more affected by detector modelling issues)

Calibration analyses typically focus on the selection of pure and well understood
sample of jets of a given flavour in data with which to measure the efficiency

b-jet calibrations often rely on tt̄ events while pure samples of c and light flavour jets
are typically more difficult to isolate

As a demonstration of the concept, how is this calibration performed for b-jets?
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Calibration - b-jet calibration with tt̄ events

Exploit copious b-jet production in top
quark decays:

Select sample of di-leptonic tt̄ events
tt̄ → `+`−bb̄ + Emiss

T , very low
backgrounds in e + µ channel

With multivariate analysis based on
kinematic varibles, can enrich sample of
jets with b−jets from top quark decays
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efficiency in data, total relative

uncertainty typically less than 10%
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Combination of all b-jet and detector
modelling issues manifest as slightly
lower b-tagging efficiency in simulation

Correction applied to MC event weights
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Calibration - Summary of c-jet and light flavour jet calibrations

Generally more difficult to isolate sufficienctly pure samples of c and light jets, given
very high c and light jet rejection factors of b-tagging algorithms...

c-jets: The following processes are exploited to isolate high purity c-jet samples

Semi-leptonic tt̄ events (with W → cs, cd
decays)

W (`ν) + c(µνX ) events, exploit charge
correlation between leptons (example
diagram →)

Multi-jet events with a reconstructed
D?± → D0π±s (with D0 → Kπ)

W−

c

d , s

g

Light flavour jets: Typically use multi-jet event samples with the following techniques

For light jets, differences in performance between data and simulation tend to be
dominated by detector modelling effects (e.g. track IP resolution)

“Negative tag” - reversing the IP sign of tracks or decay length significance sign of
SVs can provide a good approximation of the mistag rate due to resolution effects

“Adjusted MC” - Modify track parameters in simulated events to reflect resolution in
data, repeat b-tagging with “adjusted” tracks to estimate change in mistag rate
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Calibration - H → bb̄ taggers

Difficult to isolate sample of X → bb̄ events for calibration, so turn to g → bb̄
splitting in multi-jet events as a control sample:

From a multi-jet event sample, identify large R = 1.0 jets with two associated small
R = 0.2 track jets

Enrich g → bb̄ content by requiring a reconstructed muon to be associated to at
least one of the track jets (preferentilly selecting b → B → µνX )

Perform fit to transverse IP significance (Sd0 ) distribution of the tracks with highest
|Sd0 | to determine g → bb̄ component
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Summary

b-tagging exploits the unique properties of the b-hadrons to identify b-jets containing
distinctive high impact parameter tracks and secondary vertex signatures

As a consequence, simulated b-tagging performance is sensitive to many issues
surrounding the modelling of c/b hadron production/decay in MC generators

Well established calibration techniques developed to account for such issues, allowing
MC simulation to remain a powerful tool to aid measurements
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End result is highly performant and well understood b-tagging algorithms which
enable to explore heavy flavour final states towards advancing our understanding of

the SM and perhaps elucidate what may lie beyond it!
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Measurements of c-hadron fragmentation fractions at LEP

Hc ALEPH DELPHI OPAL

f (c → Hc) [%] f (c → Hc) [%] f (c → Hc) [%]

D0 55.3 ± 1.6 ± 3.4 53.4 ± 1.5 ± 2.2 58.2 ± 4.0 +3.9
−3.6

D+ 23.4 ± 0.8 ± 1.3 22.2 ± 0.7 ± 0.9 22.8 ± 2.9 +1.6
−2.0

D+
s 9.1 ± 1.5 ± 0.5 9.7 ± 0.9 ± 0.5 7.1 ± 1.9 ± 0.9

Λ+
c 5.8 ± 0.6 ± 0.3 6.4 ± 1.3 ± 0.7 3.5 ± 1.6 ± 0.6

D?+ 23.3 ± 1.0 ± 0.9 24.1 ± 0.6 ± 0.9 23.0 ± 0.4 ± 0.9

Table from: Eur. Phys. J. C75 (2015) 19 (arXiv:1404.3888)
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Measurements of b-hadron frag. fractions at LEP and Tevatron

– 7–

mass measurement of the B∗
s meson has been obtained [35,36].

However, the small boost of Bs mesons produced in this way

prevents resolution of their fast oscillations for time-dependent

measurements; these are only accessible in hadron collisions or

at the Z peak.

In high-energy collisions, the produced b or b̄ quarks can

hadronize with different probabilities into the full spectrum

of b-hadrons, either in their ground or excited states. Table 1

shows the measured fractions fd, fu, fs, and fbaryon of B0,

B+, B0
s , and b baryons, respectively, in an unbiased sample

of weakly decaying b hadrons produced at the Z resonance

or in pp collisions [33]. The results were obtained from a fit

where the sum of the fractions were constrained to equal 1.0,

neglecting production of Bc mesons. The observed yields of

Bc mesons at the Tevatron [19] yields fc = 0.2%, in agreement

with expectations [37], and well below the current experimental

uncertainties in the other fractions.

Table 1: Fragmentation fractions of b quarks
into weakly-decaying b-hadron species in Z → bb
decay, in pp collisions at

√
s = 1.96 TeV.

b hadron Fraction at Z [%] Fraction at pp[%]

B+, B0 40.4 ± 0.9 33.9 ± 3.9

Bs 10.3 ± 0.9 11.1 ± 1.4

b baryons 8.9 ± 1.5 21.2 ± 6.9

For rather long time, the average of fractions in pp col-

lisions and in Z decay was used as it was assumed that the

hadronization is identical in the two environments. It was clear

that this assumption dost not have to hold in principle, be-

cause of the different momentum distributions of the b-quark

in these processes; the sample used in the pp measurements

has momenta close to the b mass, rather than mZ/2. But

in the absence of any significant evidence there was also no

strong reason against the average. Some discrepancies were ob-

served, but as picture was also obscured by 1.8σ discrepancy

in the average time-integrated mixing probability parameter

August 21, 2014 13:17

Table from: K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014)
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“Ghost Association”

M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas,” Phys.
Lett. B 659 (2008) 119 (arXiv:0707.1378)

“The jet area is a non-trivial (and novel) concept insofar as a jet consists of
pointlike particles, which themselves have no intrinsic area. To define a sensible
area one therefore adds additional, infinitely soft particles (ghosts) and identifies

the region in y , φ where those ghosts are clustered with a given jet. The extent of
this region gives a measure of the (dimensionless) jet area.”
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“Ghost Association” of R = 0.2 track jets to R = 1.0 calo. jets

ATLAS Collaboration, “Boosted Higgs (→ bb̄) Boson Identification with the
ATLAS Detector at

√
s = 13 TeV,” ATLAS-CONF-2016-039

“In this procedure, the ghosts are the track jet 4-vectors in the event, with the
track jet pT set to an infinitesimal amount, essentially only retaining the direction
of the track jets. This ensures that jet reconstruction is not altered by the ghosts
when the calorimeter clusters plus ghosts are reclustered. The reclustering is then

performed using the anti-kT algorithm with R = 1.0. The calorimeter jets after
reclustering are identical to the ungroomed parents of the trimmed jets used in

this analysis, with the addition of the associated track jets retained as
constituents. In this analysis, track jets ghost-associated to the large-R jet refer to
track jets found this way within the catchment area of the ungroomed parent jet,
but the kinematics of the large-R jet are still measured using the trimmed jet.”
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c-jet tagging
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Two examples of the performance of MVA based c-jet taggers, using “Deep
Learning” (left) and BDT (right) MVA training techniques
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