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H—bb signals in SM production channels at HL-LHC: 3ab™

Higher statistics shifts the balance between systematic and statistical
uncertainties. It can be exploited to define different signal regions, with
better S/B, better systematics, pushing the potential for better
measurements beyond the “systematics wall” of today’s measurements.

We often talk about “precise” Higgs measurements.VWhat we actually
aim at, is “sensitive” tests of the Higgs properties, where sensitive
refers to the ability to reveal BSM behaviours.

Sensitivity may not require extreme precision

® Going after “sensitivity”, rather than just precision, opens itself new
opportunities ...
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e.g.80=1% = A~ 2.5TeV

For H production off-shell or with large momentum transfer Q, u~O(Q)

= kinematic reach probes large A\ even

0\
00q ~ <K> if precision is low

e.g. 800 =15% at Q=1 TeV = A~2.5TeV
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Probing large Q:
Higgs production at large p
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H—bb plays a special role here, since large BR can maximize the reach in Q~pr



| will explore these ideas in the context of the

VH(—bb) signals discussed in the current H—bb
searches by ATLAS and CMS:

ATLAS, Evidence for the H—bb decay with the ATLAS detector
arXiv:1708.03299

CMS, Evidence for the decay of the Higgs Boson to Bottom Quarks
CMS-PAS-HIG-16-044



http://arxiv.org/abs/arXiv:1708.03299
http://cds.cern.ch/record/2278170/files/HIG-16-044-pas.pdf
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VH prodution at large m(VH) or pt(H) See e.g.
Biekotter, Knochel, Kramer, Liu, Riva,
arXiv:1406.7320

W ~0H?*

In presence of a higher-dim op such as:
Z boson pr (pp — HZ — bb¢+¢)
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Mimasu, Sanz, Williams, arXiv:1512.02572v
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Vs~NAI+ew

If vs=Q is the maximum kinematical reach allowed by the
beam energy + statistics, at best we can be sensitive to scales

A= Qx+ew

When Q is limited (e.g.at 7-8 TeV, or as the 13 TeV lum is still
small), and given that A cannot be too small since we would
have directly seen the new physics, one can only constrain a

special class of strongly-interacting theories, which generate

Iarge Wilson coefficients Cw. =>> Bjekotter, Knochel, Kramer, Liu, Riva,
arXiv:1406.7320

This will change at 14 TeV and high lumi ....



from the ATLAS note:

Table 13: The fitted Higgs boson signal and background yields for each signal region category in each channel after the full selection of the multivariate analysis.
The yields are normalised by the results of the global likelihood fit. All systematic uncertainties are included in the indicated uncertainties. An entry of “-”
indicates that a specific/raeRg . anent is negligible in a certain region, or that no simulated events are left after the analysis selection.

Sibaaiitsions 0-lepthbn 1-lepton 2-lepton

py > 150 Ge, 2-b-tag py > 150 GeV, 2-b-tag | 75 GeV < p; < 150 GeV, 2-b-tag | py > 150 GeV, 2-b-tag
Sample 2-jet 3-jet 2-jet 3-jet 2-jet >3-jet 2-jet >3-jet
Z+1l 9.0+5.1 5.5+8.1 <1 - 92+54 35+19 1.9+1.1 | 164+9.3
Z+cl 21.4+7.7 42 + 14 22%0.1 4.220.1 | 253%£95 105 + 39 3.3+£1.9 46 + 17
Z + HF 2198 + 84 270+ 170 | 86.5+6.1 186+13 | 3449+79 8270 + 150 651 +20 | 3052 +66
W+l 9.8+5.6 7.9+9.9 22+10 47 +22 <1 ] 4 | - |
W +cl 19.9+8.8 41 +18 70x£27 138 +53 =1 <1 < 1 <1
W + HF 460 + 51 120+ 120 | 1280+160 | 3140+420 30+04 59+0.7 <1 2.2+0.2
Single top quark 145 +22 36+ 98 830+120 | 3700+670 53416 134 +46 59+1.9 30+ 10
tt 463 +42 390+200 | 2650+ 170 | 20640+ 680 | 1453 +46 | 4904 +91 49.6+29 | 430+22
Diboson 116 +26 119+36 79+£23 135 +47 73+19 149 +32 24.4+6.2 87+19
Multi-jet e sub-ch. - - 102 + 66 27 + 68 - - - -
Multi-jet u sub-ch. - - 133 +99 90+ 130 - - - -
Total bkg. 3443 +57 | §560+91 | 5255+80 | 28110170 | 5065 +66 | 13600 +110 738+ 19 | 3664 + 56
Signal (fit) 58+17 60+ 19 63+19 65 + 21 25.0%7.8 46 + 15 13.6 +4.1 35+11
Data 3520 8634 5307 28168 115 13640 724 3708

(best S/B and S/+/B => focus here on HZ(—)vv

For simplicity consider only Z+HF bg, others will be suppressed at high pt 10
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- loss of efficiency with AR cut at large pr



Remove AR cut => look at fat jets with double b-tag
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at pr>600 GeV: B=102 S=102 => &=+/B/S~10%
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at pr>150 GeV: B=105 S=10* => §=+/B/S~3%
at pr>600 GeV: B=102 S=102 => &=+/B/S~10%

6 ~ (P'I',min//\)2 => N\ ~ PT,min/\/a =>
Asoo/Aiso = 600/150 * /(3% / 10%) ~ 2.3

While the measurement at pr>150 is 3x more precise, the
measurement at pr>600 has 2x the reach in sensitivity for N\ 13
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Further remarks

For high-Q observables, e.g. differential distributions vs Q, anomalies
amount to changes, w.r.t. SM, in the shape of the distributions.

Shapes are free from ultimate and possibly unbeatable experimental
systematics, such as the luminosity determination

Shapes are also independent of the impact of BSM on BR’s, which
could compensate the impact on rates for inclusive production

Shapes are typically less susceptible to theoretical systematics: one can
often rely on a direct experimental determination of the SM reference
behaviour, and can benefit from validation of the theoretical SM
modeling through data/MC comparisons in control samples.

On the experimental side, systematics of Higgs-tagging algorithm
efficiency (jet substructure, ML, ...) vs ptH (for S and B) is probably the
most relevant issue. But measurement of Zbb in the mbb sidebands is
probably a robust handle ....



Fyv(A) / TyySM

1.1 3
1.06§
1.04;

1.02 E

0.98

Large pr Higgs in VBF

v
Lp—g ~ CH@VEVV(?HVMVH +cavy

Dim-6 effgcts on Higgs partial widths

e = - e e e Em e e e e = e e e e = e e m m, e e e e e e e o o e e e o e e e e

0.96 £ R E

0.94 £ ’ 3

0.92 é_ /’,' WW, kHDW=1 - ZZ, kHDZ=1 i —;

: e WW, kppw=-1 = = ZZ, kpz=1 = = 3

0.9 : L A l L L L L [ ) ) ) ! [ .
A [TeV]

MadGraph5_aMC@NLO

Cwv(A) 7 TyySM

11 ¢
1.08 |
1.062
1.04 |

1.02

0.98

0.96 £ ) 3
0.94 F E
0.92 F WW, kHWW=1 — ZZ, ksz=1 — —é
F WW, kwa=-1 - - 77, ksz=-1 - - 3
0.9 ¢ L P L1
05 1 2 4

U

VY H

Dim-6 effects on Higgs partial widths

MadGraph5_aMC@NLO

A [TeV]

~2% deviations in B(H—=VV*)

= N\~ |.8TeV

(for c~1I)

= N\~ 0.8 TeV



Large pr Higgs in VBF
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gg—H at large pr

(See also
Azatov and Paul arXiv:1309.5273v3)
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Table 3: The benchmark points shown in Fig. We set tan 8 = 10, M4 = 500GeV,

M, = 1000GeV, p = 200GeV and all trilinear couplings to a common value A.

The

remaining sfermion masses were set to 1 TeV and the mass of the lightest C'P-even Higgs
was set to 125 GeV.

Point | m;, [GeV] | m;, [GeV] | A; [GeV] AW
P 171 440 490 | 0.0026
Py 192 1224 1220 | 0.013
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http://arxiv.org/abs/1309.5273v3

CMS, Inclusive search for the standard model Higgs boson produced in pp

collisions at +/s=13 TeV using H—=bb decays
CMS-PAS-HIG-17-010
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Figure 4: Post-fit mgp distributions in data for the pass and fail regions and combined pr cate-
gories by using a polynomial 2nd order in p and 1st order in pt. The features at 166 GeV and
180 GeV in the mgp distribution are due to the kinematic selection on p, which affects each pr

category differently.
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https://cds.cern.ch/record/2266164
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Final remarks

Higher lumi and large BR(H—bb) allow us to consider more
extreme kinematics for Higgs final states

pt(H) in the range 500-1000 GeV could offer larger sensitivity to
deviations from SM than inclusive measurements at the limit of
their syst/stat reach

more work to be done, in TH and EXP, to assess more
conclusively the potential of these measurements. Plenty of room

for improvements

Contrary to the direct BSM search programme, which will
approach its asymptotic limits well before the 3ab~' are collected,

the study of Higgs properties will dominate the endgame (cfr
Mw,op at Tevatron)
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