Experience with modelling of processes with heavy flavor in ATLAS analyses (including calibrations) -What are the key issues?

- Open Day of Hbb/FTAG Workshop
- Stony Brook University
- Tuesday 5th September 2017

Paul Thompson University of Birmingham

On behalf of the ATLAS Collaboration

Heavy Flavour at the LHC

Modelling events using Monte Carlo (MC) at the LHC involves: Matrix elements to leading order (LO) or next-to-leading order (NLO) Higher multiplicities through parton shower (PS) or multi-leg with each multiplicity at LO. Need to avoid double counting using matching schemes (CKKW-L, MLLM, FxFx etc.)

Heavy Flavour provides testing ground for QCD, multi-scale m_z , m_w , p_T^{jet} and challenge how to deal with the heavy quark mass:

5 Flavour scheme (5FS) allows to resum large logarithmic terms into in the b-quark PDF 4 Flavour scheme (4FS) allows to take care of mass effects but does not resum any possible large logs. *Challenging to produce inclusive flavour MCs avoiding overlaps of HF in ME and PS*

In this short introduction just focus on SM VHbb analysis and two areas namely V+HF jet production and single top Wt

V+Jets Modelling in Run 1 JHEP01(2015)069

Used leading order 4FS Sherpa v1.4 For both W+jets and Z+jets had mis-modellings in p_T^V and $\Delta \phi_{jj}$.

Applied various reweights depending on boson type and number of b-tags Example shown is p_T^W with 0 b-tags after applying reweight as a function of $\Delta \phi j j$ Each mis-modelling led to reweight plus sizeable systematic uncertainties in the corrections

ATLAS MC Notes

ATLAS (via its Physics Modelling Group – PMG) continues to provide up-to-date documentation of the ATLAS MC status – existing/planned models/systematic prescriptions. Generally aim to be in time for the various experimental-theoretical workshops throughout the year so that can get feedback from theoretical community. <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MCPublicResults</u>

Recent examples of MC notes :

• ATLAS simulation of boson plus jets processes in Run 2

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-063/

- Multi-Boson Simulation for 13 TeV ATLAS Analyses
 <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-005/</u>
- Studies on top-quark Monte Carlo modelling with Sherpa and MG5_aMC@NLO <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-007/</u>
- Modelling of the tt H and tt V (V = W, Z) processes for Vs = 13 TeV ATLAS analyses
 <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2016-005/</u>

ATLAS MC Note V+Jets Modelling in Run 2

Comparison with recent 13TeV 2015 Z+jets data (arXiv: 1702.05725) Reasonable description of data by latest NLO models: Sherpa 2.2 MEPS@NLO, NLO for V+0,1,2 jets, LO multi-leg up to 4. NNLO PDF Powheg MinNLO+Pythia8, with NLO accuracy for Z+1 jet MadGraph5_aMC@NLO+Pythia8 using NLO up to 2 jets and FxFx merging with PS

Run 2 V+Jets HF Modelling

https://arxiv.org/abs/1708.03299

Can obtain relatively pure control regions for W+HF and Z+HF Sherpa v2.2 does a good job of describing shapes (no need for reweights). Fit requires adjustment of predicted normalisations (see over) Systematic uncertainties: Zbb from data, Wbb from MC (data CR is at low m_{BB})

W/Z Background Model

Process	Normalisation factor		
W + HF 2-jet	1.22 ± 0.14		
W + HF 3-jet	1.27 ± 0.14		
Z + HF 2-jet	1.30 ± 0.10		
Z + HF 3-jet	1.22 ± 0.09		

Free Floating Normalisations

Data show need for better theoretical understanding - or agrees within full theoretical error?

- Central value difference is the choice of scale, scheme (5FS vs 4FS), order of pQCD or choice of mass or PDF or fragmentation parameters or...?

Z+jets				
Z + ll normalisation	18%			
Z + cl normalisation	23%			
Z + bb normalisation	Floating (2-jet, 3-jet)			
Z + bc-to- $Z + bb$ ratio	30-40%			
Z + cc-to- $Z + bb$ ratio	13-15%			
Z + bl-to- $Z + bb$ ratio	20-25%			
0-to-2 lepton ratio	7%			
$p_{\mathrm{T}}^{V}, m_{bb}$	S			
W+jets				
W + ll normalisation	32%			
W + cl normalisation	37%			
W + bb normalisation	Floating (2-jet, 3-jet)			
W + bl-to- $W + bb$ ratio	26% (0-lepton) and 23% (1-lepton)			
W + bc-to- $W + bb$ ratio	15% (0-lepton) and 30% (1-lepton)			
W + cc-to- $W + bb$ ratio	10% (0-lepton) and 30% (1-lepton)			
0-to-1 lepton ratio	5%			
<i>W</i> +HF CR to SR ratio	10% (1-lepton)			
$p_{\rm T}^V, m_{bb}$	S			

Free floating uncertainties

Extrapolation to 0-lepton

Errors on flavour ratios taken from comparison of models As is $p_T^{\ V}$, m_{bb} shape (S) uncertainty in W+jets

Extrapolation from W+HF to SR

V+Jets HF Modelling Run 1 Data (revisited)

Models from original paper:Zbb central values lower, although agree within uncertainties Comparison with Sherpa MEPS@NLO (<u>http://arxiv.org/abs/arXiv:1612.04640</u>) also reasonable. *V+Heavy Flavour data analyses from Run 2 will be vital to continue studies...* 8

Single Top (Wt)

Single top Wt and t-channel contributes background to the 1-lepton channel: Systematic errors on m_{bb} and p_T^V shapes estimated from comparing MC models with different implementations of ME, parton shower modelling/fragmentation Wt at NLO has singly-resonant and doubly resonant contributions (interferes with LO ttbar) Powheg+Pythia6 used in VHbb analysis with Diagram Removal 1 (DR1) which sets M_{dr}=0 Interference estimated using Diagram Subtraction (DS) Uncertainty taken from largest differences and for Wt comes from DS MadGraph5 aMC@NLO also implements DR1 and assesses interference using alternative DR2

Single Top (Wt)

Generator comparison for dilepton selection:

For leading jet p_T similar prediction for *DR1 Powheg+Pythia6* and DR1 MG5_aMC@NLO+HPP Also similar interference estimate between DS Powheg+Pythia6 and DR2 MG5_aMC@NLO+HPP Interference effects visible in leading jet p_T but not leading jet eta

Key Issues (summary)

- Monte Carlo generators vital for understanding modelling of important backgrounds to new physics and improving our understanding of underlying QCD as well as parameter tuning
- Focussing on VHbb issues: V+HF and single top systematics as key issues
- Do we understand the likely V+HF scale factor difference of ~1.2? Should we be concerned or is it reasonable within the theoretical uncertainties (Note: ttbar SF~1)?
- We use multi-leg 5FS up to 2jets at NLO with B-hadron filter (3 jets@NLO takes too long)
- For the W+HF systematic uncertainties we use MC model comparisons
- Can developments in 4FS including Wbb+j @NLO be used to help to reduce this error?
- Can we boost our HF statistics more directly and/or improve our Vbbj precision?
- The single top systematic error contributes as much as errors from more dominant backgrounds
- Largest uncertainty is from Wt and ttbar interference effects
- Is it possible to have the interference calculation (and therefore smaller errors) accounted for in our simulations?

Back up

V+jets Modelling in Run 2

• Updated Run 2 models originally tuned on published 7/8 TeV Run-I data, see how they compare at 13TeV

5FS Models used by ATLAS:

- MadGraph5+Pythia8. Leading order in ME up to 4 jets , PS beyond. Different final state parameter tunings "A" and "B" and move from LO to NLO PDF
- Sherpa v2.2 NLO for V+0,1,2 jets, LO multi-leg up to 4 jets, PS for higher multiplicities.

Sample	W, 7	TeV	W, 1	3 TeV	Z	L, 7 TeV		Z	, 13 TeV	
	σ [pb]	k-fac	σ [pb]	k-fac	$\sigma ~[{ m pb}]$	k-fac	f	$\sigma \; [{ m pb}]$	k-fac	$\int f$
NNLO	10455	-	20080	-	964	-	-	1906	-	-
Sherpa 2.1	11270	0.928	22108	0.9083	1150	0.912	1.08	2290	0.9013	1.08
Sherpa 2.2	10600	0.986	-	_	1080	0.981	1.08	-	-	-
MadGraph+Pythia8 A	8290	1.26	16707	1.21	827	1.287	1.10	1710	1.239	1.10
MadGraph+Pythia8 B	8960	1.17	17880	1.123	907	1.17	1.10	1840	1.15	1.10

- Also used Alpgen in 4FS with overlap between HF and LF samples removed
- Also investigated aMC@NLO with FxFx merging. NLO for V+0,1,2 jets and PS beyond
- And also Powheg MiNLO with NLO for V+1jet

Now have Run 2 ATLAS SM V+jets measurement (inclusive - not yet HF)...

Impact of Systematics on µ

Source of uncertainty		σ_{μ}		
Total		0.39		
Statistical		0.24		
Systematic		0.31		
Experimenta	d uncertainties			
Jets		0.03		
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03		
Leptons		0.01		
	b-jets	(0.09)		
b-tagging	c-jets	0.04		
	light jets	0.04		
	extrapolation	0.01		
Pile-up		0.01		
Luminosity		0.04		
Theoretical and modelling uncertainties				
Signal		0.17		
Floating normalisations		0.07		
Z+jets		(0.07)		
W+jets		0.07		
$t\overline{t}$		0.07		
Single top-quark		0.08		
Diboson		0.02		
Multijet		0.02		
MC statistic	al	$\left(0.13 \right)$		

Limiting factors

- Signal modelling
- Monte Carlo statistics
- Flavour tagging
- Background modelling

Systematically Limited

Signal modelling dominated by extrapolation from high p_T^{V} to full phase space and showering Pythia 8 vs Herwig 7. Doesn't affect significance

Monte Carlo Stats despite flavour filtering and $p^{\ensuremath{\mathsf{TV}}}$ slicing

Background model, all contribute similar level Will improve as we collect more data but theoretical progress crucial too *Surprising that single top contributes (see over)*

Top Background Model

Free floating uncertainties

Process	Normalisation factor
$t\bar{t}$ 0- and 1-lepton	0.90 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	0.97 ± 0.09
$t\bar{t}$ 2-lepton 3-jet	1.04 ± 0.06

Extrapolation uncertainties analogous to W/Z