Brief overview of theory progress in $W+b$ jets and $Z+b$ jets

Towards a more coherent interpretation of experimental measurements

Laura Reina

ATLAS workshop on $H \rightarrow b \bar{b}$ and flavor tagging
Simons Center for Theoretical Physics, Stony Brook, Sep. 5, 2017

Relevance of $V+b$ jets $\left(V=W^{ \pm}, Z\right)$:
\triangleright Main background to several important SM and BSM signatures:
$\triangleright W H / Z H$ associated production, $H \rightarrow b \bar{b}$;
\triangleright single-top production;
\triangleright several BSM signatures (with $l^{ \pm}, E_{T}, b$ jets, light jets).
\triangleright Direct access to b parton density (true also for $\gamma+b$ jets),
\triangleright intrinsic QCD relevance;
\triangleright impact on $H+b$-jet searches, \ldots
\triangleright testing ground for other complex processes involving b jets
(ex.: $t \bar{t}+b$ jets).
Main ideas for this talk:
$\triangleright W / Z+b$ jets are multi-scale processes $\left(m_{b} \gg \Lambda_{Q C D}, m_{b} \ll M_{W / Z}\right)$.
\triangleright Need to control sensitivity to $\mathbf{m}_{\mathbf{b}}$ in theoretical predictions $\hookrightarrow b$ quarks/jets have a well defined exp. identity.
$\triangleright \mathbf{m}_{\mathbf{b}}$ effects present at all levels
\hookrightarrow hard matrix element, parton shower, PDF, ...
\triangleright Develop good understanding of what is involved in theory predictions.
\triangleright Improve estimate of theoretical accuracy.

A quick synopsis: W vs. Z, and $1 b$ vs. $2 b$ jets
$V+2 b$ jets:
only via the tree-level processes ($n_{l f}=4 \rightarrow 4 \mathrm{FS}, m_{b} \neq 0$)
$\rightarrow q \bar{q}^{\prime} \rightarrow W b \bar{b}$
$\rightarrow q \bar{q}, g g \rightarrow Z b \bar{b} / \gamma b \bar{b}$
and corresponding higher-order corrections.
$V+1 b$ jet:
still via the tree-level processes ($n_{l f}=4 \rightarrow 4 \mathrm{FS}, m_{b} \neq 0$)

$$
\begin{aligned}
& \rightarrow q \bar{q}^{\prime} \rightarrow W b \bar{b} \\
& \rightarrow q \bar{q}, g g \rightarrow Z b \bar{b} / \gamma b \bar{b}
\end{aligned}
$$

but also ($n_{l f}=5 \rightarrow 5 \mathrm{NS}, m_{b}=0$, only kept as IR regulator),

$$
\rightarrow b \bar{q} \rightarrow W b+q^{\prime}
$$

$$
\rightarrow b g \rightarrow Z b / \gamma b
$$

and corresponding higher-order corrections.
4FS vs 5FS: a technical means of "improving" the perturbative expansion.

Observe that:

$\triangleright b g \rightarrow Z b / \gamma b$ is related to $g g \rightarrow Z b \bar{b} / \gamma b \bar{b}$,

$\triangleright b g \rightarrow W b+q^{\prime}$ is related to $q g \rightarrow W b \bar{b}+q^{\prime}$,

by defining a purely perturbative b-quark density (from $g \rightarrow b \bar{b}$), e.g.

$$
b(x, \mu)=\frac{\alpha_{s}}{2 \pi} \ln \frac{\mu^{2}}{\boldsymbol{m}_{\mathrm{b}}^{2}} \int_{x}^{1} \frac{d z}{z} P_{q g}(z) g\left(\frac{x}{z}, \mu\right)+\cdots
$$

[expansion at first order of the RGE evolved $b(x, \mu)$]

Where:

\triangleright Potentially large logarithmic corrections arise from phase-space integration of untagged b quark.
\triangleright They can be resummed using RG techniques into $b(x, \mu)$: 5FS often brings stability to total cross sections.
\triangleright Non-logarithmic m_{b} dependence and kinematic information partially missed in 5FS: 4FS more reliable for distributions.
\triangleright Possible to combine both approaches (4FS ad 5FS) using matching techniques, [for $H+b$-jets see: Bonvini et al., arXiv:1508.05288 (EFT);
Forte et al., arXiv:1508.01529, arXiv:1607.00389 (FONNL)].
And yet:
$\triangleright 4$ FS and 5FS calculations need to be interfaced with parton-shower (PS) event generators, including NLO QCD corrections.
\triangleright Can 5FS+PS be implemented without loosing m_{b} information?
\triangleright how to reconcile the kinematic of a massive b quark, and $m_{b} \neq 0$ in the PS, with $m_{b}=0$ in the hard scattering?
\triangleright Is $m_{b}=0$ required by b initiated processes?
\triangleright Is an initial-state massive b consistent with available b PDF?
\triangleright Are there other $\mathbf{m}_{\mathbf{b}}$-related effects that we should also investigate (ex: final state enhanced $g \rightarrow b \bar{b}$ splitting)?
$W+1 b$ jet vs. $W+2 b$ jets
One or two LO processes, depending on choice of 4 FS vs 5 FS :

Correspondently, at NLO:

1. $q \bar{q}^{\prime} \rightarrow W b \bar{b}$ at tree level and one loop $\left(m_{b} \neq 0\right)$
2. $q \bar{q}^{\prime} \rightarrow W b \bar{b} g$ at tree level $\left(m_{b} \neq 0\right)$
3. $b q \rightarrow W b q^{\prime}$ at tree level and one loop $\left(m_{b}=0\right)$
4. $b q \rightarrow W b q^{\prime} g$ and $b g \rightarrow W b q^{\prime} \bar{q}$ at tree level $\left(m_{b}=0\right)$
5. $g q \rightarrow W b \bar{b} q^{\prime}$ at tree level $\left(m_{b} \neq 0\right) \rightarrow$ avoiding double counting
$\triangleright W+2 b$ jets: processes $1+2+5$
$\triangleright W+2$ jets with at least one b jet: processes $1+2+5(4 \mathrm{FS})$ or $1+\cdots+5$ (5FS).
\hookrightarrow In the case of $W+1 b$ the 5FS calculation include the 4FS one.

NLO QCD studies vs. experimental measurements

- $W+2 b$ jets:
- Febres Cordero, L.R., Wackeroth, hep-ph/0606102, arXiv:0906.1923 (4FS)
- Badger, Campbell, Ellis, arXiv:1011.6647 (4FS, $W \rightarrow l \nu) \rightarrow$ MCFM
- Oleari, L.R., arXiv.1105.4488 (4FS) \rightarrow POWHEG-BOX
- Frederix, et al., arXiv:1106.6019 (4FS) \rightarrow MG5aMC@NLO
- the CMS collaboration, arXiv:1312.6608, arXiv:1608.07561.
- $W+2 b+$ jet:
- L.R., Schutzmeier, arXiv:1110.4438 (4FS, one-loop only)
- Luisoni, Oleari, Tramontano, arXiv:1502.01213 (4FS) \rightarrow POWHEG-BOX
- $W+2$ jets with at least one b jet:
- Campbell, et al., arXiv:0809.3003, arXiv:1107.3714 (5FS) \rightarrow MCFM
- the CDF collaboration, arXiv:0909.1505,
- the D0 collaboration, arXiv:1210.0627
- the ATLAS collaboration, arXiv:1109.1470, arXiv:1302.2929.

Comparison with ATLAS and CMS

\triangleright ATLAS and CMS complementary measurements: $W+b+j$ vs. $W+2 b$.
\triangleright Difficult to interpret CMS comparison with theory, NLO QCD vs. LO+PS (normalized).
\triangleright Much more thorough study of theoretical systematic needed (scales, PDF, m_{b}, DPI, PS effects; multiple jet samples; ...)
\triangleright Useful to test different tools (ex.: $W+2 b$ also available in POWHEG-BOX).
$Z+2 b$ jets vs. $Z+1 b$ jets
LO processes, depend on choice of 4FS vs 5FS:

$+\quad O\left(\alpha_{s}\right)$ corrections

$+\quad O\left(\alpha_{s}\right)$ corrections

Correspondently, at NLO:

1. $q \bar{q}, g g \rightarrow Z b \bar{b}$ at tree level and one loop (with $m_{b} \neq 0$);
2. $q \bar{q}, g g \rightarrow Z b \bar{b}+g$ and $g q(g \bar{q}) \rightarrow Z b \bar{b}+q(\bar{q})$ (with $\left.m_{b} \neq 0\right)$.
3. $b g \rightarrow Z b$ at tree level and one loop (with $m_{b}=0$);
4. $b g \rightarrow Z b+g, b q \rightarrow Z b+q$ (with $m_{b}=0$);
$Z+2 b$ jets: processes $1+2$
$Z+1 b$ jet: processes $3+4+(1+2)_{L O}(5 \mathrm{FS})$ or $(1+2)_{N L O}(4 \mathrm{FS})$

NLO QCD studies vs. experimental measurements

- $Z+2 b$ jets:
- Febres Cordero, L.R., Wackeroth, arXiv:0806.0808, arXiv:0906.1923 (4FS)
- Frederix, et al., arXiv:1106.6019 (4FS) \rightarrow MG5aMC@NLO
- Krauss, Napoletano, Schumann arXiv:1612.04640 (4FS) \rightarrow OL+SHERPA
- the CMS collaboration, arXiv:1310.1349
- $Z+1 b$ jet, $Z+2$ jets with at least one b jet:
- Campbell, Ellis, Maltoni, Willenbrock, hep-ph/0312024 (5FS) \rightarrow MCFM
- Campbell, Ellis, Maltoni, Willenbrock, hep-ph/0510362 (5FS) \rightarrow MCFM
- Frederix, et al., arXiv:1106.6019 (5FS) \rightarrow MG5aMC@NLO
- Krauss, Napoletano, Schumann arXiv:1612.04640 (5FS) \rightarrow OL+SHERPA
- the CDF collaboration, hep-ex/0812.4458,
- the D0 collaboration, arXiv:1301.2233
- the ATLAS collaboration, arXiv:1109.1403
- the CMS collaboration, arXiv:1402.1521, arXiv:1611.06507

Comparison with ATLAS and CMS

$\sigma(\mathrm{Zb}), \mathrm{Z}+\geq 1$ bjets

- ATLAS and CMS both measured $\mathbf{Z}+\mathbf{1 b}$ and $\mathbf{Z}+\mathbf{2 b}$ (including distributions: $\left.p_{T}^{b}, p_{T}^{Z}, \eta^{b}, H_{T}, m_{b \bar{b}}, m_{b \bar{b} Z}, R_{b Z}, R_{b \bar{b}}, \ldots\right)$
- Interesting comparison 4FS vs. 5FS (+PS).
- Much more thorough study of theoretical systematic needed.
- Good candidate to study m_{b} effects in 5FS (all levels).

Outlook

- We seem to be converging towards a more definite understanding of $V+b$ jets at hadron collider.
\hookrightarrow For a review aimed at interpretation of exp. measurements:
[Febres Cordero, L.R., arXiv:1504.07177]
- Experimental precision soon better than theoretical accuracy.
- $\mathbf{W} / \mathbf{Z}+\mathbf{b}$ jets now available (4FS/5FS) in several NLO PS event generators:
$\hookrightarrow V+1 b$ can be tricky to properly account for m_{b} effects. state.
\hookrightarrow Other m_{b} dependent PS effects need to be studied.
- Measurements could be tailored to specific theoretical issues: isolate samples with definite number of light and b jets, distinguish b and ($b \bar{b}$) in jets, distributions, ...
- More systematic estimate of theoretical accuracy needed (scales, PDF, m_{b}, DPI, PS effects; ...)

