Brief overview of theory progress in W+b jets and Z+b jets

Towards a more coherent interpretation of experimental measurements

Laura Reina

ATLAS workshop on $H \to b\bar{b}$ and flavor tagging

Simons Center for Theoretical Physics, Stony Brook, Sep. 5, 2017

Relevance of V + b jets $(V = W^{\pm}, Z)$:

- ▶ Main **background** to several important SM and BSM signatures:
 - ightharpoonup WH/ZH associated production, $H \to b\bar{b}$;
 - ▶ single-top production;
 - \triangleright several BSM signatures (with l^{\pm} , $\not\!\!E_T$, b jets, light jets).
- \triangleright Direct access to b **parton density** (true also for $\gamma + b$ jets),
 - ▶ intrinsic QCD relevance;
 - \triangleright impact on H + b-jet searches, ...
- \triangleright **testing ground** for other complex processes involving b jets (ex.: $t\bar{t} + b$ jets).

Main ideas for this talk:

- $\triangleright W/Z + b$ jets are multi-scale processes $(m_b \gg \Lambda_{QCD}, m_b \ll M_{W/Z})$.
- ▶ Need to control sensitivity to m_b in theoretical predictions
 - \hookrightarrow b quarks/jets have a well defined exp. identity.
- ightharpoonup m_b effects present at all levels
 - → hard matrix element, parton shower, PDF, ...
- ▶ Develop good understanding of what is involved in theory predictions.
- ▶ Improve estimate of theoretical accuracy.

A quick synopsis: W vs. Z, and 1b vs. 2b jets

V + 2b jets:

only via the tree-level processes $(n_{lf} = 4 \rightarrow 4\text{FS}, m_b \neq 0)$

- $\rightarrow q\bar{q}' \rightarrow Wb\bar{b}$
- $\rightarrow q\bar{q}, gg \rightarrow Zb\bar{b}/\gamma b\bar{b}$

and corresponding higher-order corrections.

V + 1b jet:

still via the tree-level processes $(n_{lf} = 4 \rightarrow 4FS, m_b \neq 0)$

- $\rightarrow q\bar{q}' \rightarrow Wb\bar{b}$
- $\rightarrow q\bar{q}, gg \rightarrow Zb\bar{b}/\gamma b\bar{b}$

but also $(n_{lf} = 5 \rightarrow 5 \text{NS}, m_b = 0, \text{ only kept as IR regulator}),$

- $\rightarrow b\bar{q} \rightarrow Wb + q'$
- $\rightarrow bg \rightarrow Zb/\gamma b$

and corresponding higher-order corrections.

4FS vs 5FS: a technical means of "improving" the perturbative expansion.

Observe that:

 $\triangleright bg \rightarrow Zb/\gamma b$ is related to $gg \rightarrow Zb\bar{b}/\gamma b\bar{b}$,

 $\triangleright bg \rightarrow Wb + q'$ is related to $qg \rightarrow Wb\bar{b} + q'$,

by defining a purely perturbative b-quark density (from $g \to b\bar{b}$), e.g.

$$b(x,\mu) = \frac{\alpha_s}{2\pi} \ln \frac{\mu^2}{\mathbf{m_b^2}} \int_x^1 \frac{dz}{z} P_{qg}(z) g\left(\frac{x}{z},\mu\right) + \cdots$$

[expansion at first order of the RGE evolved $b(x,\mu)$]

Where:

- \triangleright Potentially large logarithmic corrections arise from phase-space integration of untagged b quark.
- \triangleright They can be **resummed** using RG techniques into $b(x, \mu)$: **5FS often** brings stability to total cross sections.
- \triangleright Non-logarithmic m_b dependence and kinematic information partially missed in 5FS: **4FS more reliable for distributions**.
- Possible to **combine both approaches** (4FS ad 5FS) using matching techniques, [for H + b-jets see: Bonvini et al., arXiv:1508.05288 (EFT); Forte et al., arXiv:1508.01529, arXiv:1607.00389 (FONNL)].

And yet:

- ▶ 4FS and 5FS calculations need to be interfaced with parton-shower (PS) event generators, including NLO QCD corrections.
- \triangleright Can 5FS+PS be implemented without loosing m_b information?
 - b how to reconcile the kinematic of a massive b quark, and $m_b \neq 0$ in the PS, with $m_b = 0$ in the hard scattering?
 - ightharpoonup Is $m_b = 0$ required by b initiated processes?
 - \triangleright Is an initial-state massive b consistent with available b PDF?
- Are there other m_b -related effects that we should also investigate (ex: final state enhanced $g \to b\bar{b}$ splitting)?

W + 1b jet vs. W + 2b jets

One or two LO processes, depending on choice of 4FS vs 5FS:

Correspondently, at NLO:

- 1. $q\bar{q}' \to Wb\bar{b}$ at tree level and one loop $(m_b \neq 0)$
- 2. $q\bar{q}' \to Wb\bar{b}g$ at tree level $(m_b \neq 0)$
- 3. $bq \to Wbq'$ at tree level and one loop $(m_b = 0)$
- 4. $bq \to Wbq'g$ and $bg \to Wbq'\bar{q}$ at tree level $(m_b = 0)$
- 5. $gq \to Wb\bar{b}q'$ at tree level $(m_b \neq 0) \to \text{avoiding double counting}$
- \triangleright W + 2b jets: processes 1 + 2 + 5
- \triangleright W + 2 jets with at least one b jet: processes 1 + 2 + 5 (4FS) or 1 + \cdots + 5 (5FS).

 \hookrightarrow In the case of W+1b the 5FS calculation include the 4FS one.

NLO QCD studies vs. experimental measurements

- W + 2b jets:
 - Febres Cordero, L.R., Wackeroth, hep-ph/0606102, arXiv:0906.1923 (4FS)
 - Badger, Campbell, Ellis, arXiv:1011.6647 (4FS, $W \rightarrow l\nu) \rightarrow \text{MCFM}$
 - Oleari, L.R., arXiv.1105.4488 (4FS) \rightarrow POWHEG-BOX
 - Frederix, et al., arXiv:1106.6019 (4FS) \rightarrow MG5aMC@NLO
 - the CMS collaboration, arXiv:1312.6608, arXiv:1608.07561.
- W + 2b + jet:
 - L.R., Schutzmeier, arXiv:1110.4438 (4FS, one-loop only)
 - Luisoni, Oleari, Tramontano, arXiv:1502.01213 (4FS) → POWHEG-BOX
- W + 2 jets with at least one b jet:
 - Campbell, et al., arXiv:0809.3003, arXiv:1107.3714 (5FS) \rightarrow MCFM
 - the CDF collaboration, arXiv:0909.1505,
 - the D0 collaboration, arXiv:1210.0627
 - the ATLAS collaboration, arXiv:1109.1470, arXiv:1302.2929.

Comparison with ATLAS and CMS

- \triangleright ATLAS and CMS **complementary measurements**: W+b+j vs. W+2b.
- Difficult to interpret CMS comparison with theory, NLO QCD vs. LO+PS (normalized).
- \triangleright Much more thorough study of theoretical systematic needed (scales, PDF, m_b , DPI, PS effects; multiple jet samples; ...)
- \triangleright Useful to test different tools (ex.: W+2b also available in POWHEG-BOX).

Z + 2b jets vs. Z + 1b jets

LO processes, depend on choice of 4FS vs 5FS:

Correspondently, at NLO:

- 1. $q\bar{q}, gg \to Zb\bar{b}$ at tree level and one loop (with $m_b \neq 0$);
- 2. $q\bar{q}, gg \to Zb\bar{b} + g$ and $gq(g\bar{q}) \to Zb\bar{b} + q(\bar{q})$ (with $m_b \neq 0$).
- 3. $bg \to Zb$ at tree level and one loop (with $m_b = 0$);
- 4. $bg \rightarrow Zb + g$, $bq \rightarrow Zb + q$ (with $m_b = 0$);

Z + 2b jets: processes 1 + 2

Z + 1b jet: processes $3 + 4 + (1 + 2)_{LO}$ (5FS) or $(1 + 2)_{NLO}$ (4FS)

NLO QCD studies vs. experimental measurements

- Z + 2b jets:
 - Febres Cordero, L.R., Wackeroth, arXiv:0806.0808, arXiv:0906.1923 (4FS)
 - Frederix, et al., arXiv:1106.6019 (4FS) \rightarrow MG5aMC@NLO
 - Krauss, Napoletano, Schumann arXiv:1612.04640 (4FS) → OL+SHERPA
 - the CMS collaboration, arXiv:1310.1349
- Z + 1b jet, Z + 2 jets with at least one b jet:
 - Campbell, Ellis, Maltoni, Willenbrock, hep-ph/0312024 (5FS) \rightarrow MCFM
 - Campbell, Ellis, Maltoni, Willenbrock, hep-ph/0510362 (5FS) \rightarrow MCFM
 - Frederix, et al., arXiv:1106.6019 (5FS) \rightarrow MG5aMC@NLO
 - Krauss, Napoletano, Schumann arXiv:1612.04640 (5FS) → OL+SHERPA
 - the CDF collaboration, hep-ex/0812.4458,
 - the D0 collaboration, arXiv:1301.2233
 - the ATLAS collaboration, arXiv:1109.1403
 - the CMS collaboration, arXiv:1402.1521, arXiv:1611.06507

Comparison with ATLAS and CMS

- ATLAS and CMS both measured $\mathbf{Z} + \mathbf{1b}$ and $\mathbf{Z} + \mathbf{2b}$ (including distributions: p_T^b , p_T^Z , η^b , H_T , $m_{b\bar{b}}$, $m_{b\bar{b}Z}$, R_{bZ} , $R_{b\bar{b}}$, ...)
- Interesting comparison 4FS vs. 5FS (+PS).
- Much more thorough study of theoretical systematic needed.
- Good candidate to study m_b effects in 5FS (all levels).

Outlook

- We seem to be converging towards a more definite understanding of V + b jets at hadron collider.
 - → For a review aimed at interpretation of exp. measurements: [Febres Cordero, L.R., arXiv:1504.07177]
- Experimental precision soon better than theoretical accuracy.
- W/Z + b jets now available (4FS/5FS) in several NLO PS event generators:
 - $\hookrightarrow V + 1b$ can be tricky to properly account for m_b effects. state.
 - \hookrightarrow Other m_b dependent PS effects need to be studied.
- Measurements could be tailored to specific theoretical issues: isolate samples with definite number of light and b jets, distinguish b and $(b\bar{b})$ in jets, distributions, ...
- More systematic estimate of theoretical accuracy needed (scales, PDF, m_b , DPI, PS effects; ...)