Borh magneton

Orbiting electrons form a current loop which give rise to a magnetic field.

Magnetic moment of a current loop:

$$|\mu| = iA$$

 \checkmark area enclosed by
current current loop

For the electron, the Bohr magneton is the simplest model possible to the smallest possible current to the smallest possible area closed by the current loop

Rutherfod (1911)- Borh model of atom (1913)

Permitted orbitals

 Borh use the classical mechanics.
 The only permitted orbital are those for with L_{orb} =nħ .
 For these orbitals the electrons don't radiate electromagnetic waves
 The energy of the photon is : E= h f

Photon
$$E = h v$$
 Borh-Einstein interpretation
energy

 $m_{\rho} v r = \hbar n$

Borh radius

= 52.97 pm

Subshells Schrödinger (1922) Subshell very important to capture or loss an electron 2 electrons max Subshell very important for the ligands 1S Pauli exclusion principle (1925) S Subshell very important for the metals **_**y 6 electrons max 2P P_1 p₀ Subshell very important for rare earths 10 electrons max 3D d_2 d. d 14 electrons max 4F

f__3

f_2

Standard Notation of Fluorine

Hund's rule

Orbital Filling Order (Diagonal Rule).

It is a semi-empirical law with exceptions case

Minimize the coulomb interaction + Pauli exclusion principle.

Orbital occupancy for the transition metals

Orbital model for H_2

Bonding

Orbital model for H_2

Band theory (Solid state physics)

Now let's take a closer look at the energy levels in solid sodium. Remember, the 3s is the outermost occupied level.

We reduce the distance between the atoms. The energy differences are very small, but enough so that a large number of electrons can be in close proximity and still satisfy the Pauli exclusion principle

The result is the formation of energy **bands**, consisting of many states close together but slightly split in energy.

Sommerfeld model of free electrons (1928)

- 1) We are in the non relativist case.
- 2) We don't consider the full subshells $\Sigma L_i=0$ and $\Sigma S_i=0$ until the subshell 3p (included). It is a have a positive ion.
- 3) We consider the itinerant electrons as a gas (the electrons inside the subshell 3d and the last subshell 4s).
- 4) The itinerant electrons have a kinetic energy only.
- 5) It is a first approximation.

Heisenberg uncertainty principle (1927)

 $\Delta p * \Delta r \ge \hbar/2$

1)The Pauli exclusion principle and the uncertainty principle limit the number of electrons with a low velocity.

2) If you increase the number of electrons , you must increase their velocity because all the states with a lower energy are busy...

Fermi-Dirac distribution (Sommerfeld model)

Each state can hold 2 electrons of opposite spin (Pauli's principle).
Near zero degree Kelvin the free electrons have a kinetic energy.

Fermi Parameters for some metals (Sommerfeld model)

electrons cm-3	
22	
22	
22	
22	
22	
22	
22	
<u>~</u> 77	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

Fermi surface for Ag Bloch model 1946

Crystalline structure for Ag

The reference for k is the radius of the atom

$$p * \lambda = h$$
$$p = \hbar * k$$

A velocity in a direction isn't possible if the wavelength is already occupied by a distance between two atoms. $\frac{p}{1} = k < 4\pi/a$

Free Electrons for the metals in a Magnetic Field (Pauli paramagnetism $T \approx OK$)

Paramagnetism for free electrons.

Fermi gas of electrons without an external magnetic field. The electrons are free (no subshell)

Landau diamagnetism (1930) $T \approx 0K$

- 1) A gas of free electrons in a magnetic field.
- 2) Free electrons move along spiral trajectories.
- 3) Lenz's law.
- 4) Diamagnetic effect.
- 5) The energy of the free electrons depend of
 - A) The kinetic energy is principally limited by the energy of Fermi.
 - *B)* The quantification of the energy created by the circular movement of the electrons

$$E_{l} = (l + \frac{1}{2})\hbar\omega_{c}. \qquad M_{Landau} = -\frac{N\mu^{2}}{2k_{B}T_{F}}B \qquad \chi_{Landau} = -\frac{\chi_{Pauli}}{3}$$

TitaniumLandau diamagnetic susceptibility (xmol)-11.110^{-6}cm³/molVanadiumLandau diamagnetic susceptibility (xmol)-28.610^{-6}cm³/mol

Landau diamagnetism $T \approx 0K$

Haas-van Halphen effect (1930) $T \approx 0K$

cyclotron frequency.

2.5

Brillouin-Langevin paramagnetism

- 1) Each atom is independent.
- 2) For each atom, the total magnetic moment μ_J (orbitals + spin) is the same for each atom. It is calculate with the quantum mechanics.
- 3) The distribution of the magnetic moments obey to the Boltzmann distribution.
 4) We calculate < total magnetic moment > for one atom and we multiply by N.
- 5) We use the Z axis as reference.

B

$$\mu_{z}$$
 μ_{J} High probability
 $\mu_{z} = g_{J} \mu_{b}$
 $\mu_{z} = g_{J} m \mu_{b}$
 μ_{z} Low probability
 μ_{J} In quantum mechanics the number
of orientations is limited

Paramagnetism

ScandiumMagnetic susceptibility (xmol) $+ 3.956 10^{-9} m^3/mol$ 1ElectronegativityPauling scale: 1.361Flectrical resistivity $40 \times 10^{-8} \Omega m (at 20 °C)$ 1Magnetic susceptibility (xmol) $+1.919 10^{-9} m^3/mol$ 1FlectronegativityPauling scale: 1.541VanadiumElectrical resistivity $20 \times 10^{-8} \Omega m (at 20 °C)$ 1VanadiumElectrical resistivity $20 \times 10^{-8} \Omega m (at 20 °C)$ 1ElectronegativityPauling scale: 1.541VanadiumElectronegativity $20 \times 10^{-9} m^3/mol$ 1ElectronegativityPauling scale: 1.63Res		Electrical resistivity	55×10 ⁻⁸ Ω m (at 20 °C)	
ElectronegativityPauling scale: 1.36TitaniumElectrical resistivity40 ×10 ⁻⁸ Ω m (at 20 °C)Magnetic susceptibility (χmol)+1.919 10 ⁻⁹ m³/mol20ElectronegativityPauling scale: 1.5420VanadiumElectrical resistivity (χmol)+3.199 10 ⁻⁹ m³/mol20VanadiumElectronegativity20 ×10 ⁻⁸ Ω m (at 20 °C)6ElectronegativityPauling scale: 1.637	Scandium	<u>Magnetic susceptibility (χmol)</u>	+ 3.956 $10^{-9} \text{ m}^3/\text{mol}$	
Electrical resistivity40 ×10 ⁻⁸ Ω m (at 20 °C)Magnetic susceptibility (χmol)+1.919 10 ⁻⁹ m³/molElectronegativityPauling scale: 1.54VanadiumElectrical resistivity (χmol)VanadiumElectronegativity (χmol)Electronegativity20 ×10 ⁻⁸ Ω m (at 20 °C)VanadiumElectronegativity (χmol)Figure 1Pauling scale: 1.63		Electronegativity	Pauling scale: 1.36	1
TitaniumMagnetic susceptibility (χmol) Electronegativity+1.919 10 ⁻⁹ m³/molCVanadiumElectrical resistivity Magnetic susceptibility (χmol) Electronegativity20 ×10 ⁻⁸ Ω m (at 20 °C) +3.199 10 ⁻⁹ m³/molCVanadiumElectronegativity Electronegativity20 ×10 ⁻⁸ Ω m (at 20 °C) +3.199 10 ⁻⁹ m³/molC		Electrical resistivity	40 ×10 ⁻⁸ Ω m (at 20 °C)	C
ElectronegativityPauling scale: 1.54VanadiumElectrical resistivity20 ×10 ⁻⁸ Ω m (at 20 °C)VanadiumMagnetic susceptibility (χmol)+3.199 10 ⁻⁹ m³/molElectronegativityPauling scale: 1.63Re	Titanium	Magnetic susceptibility (xmol)	+1.919 $10^{-9} \text{ m}^3/\text{mol}$	C
VanadiumElectrical resistivity20 ×10 ⁻⁸ Ω m (at 20 °C)CVanadiumMagnetic susceptibility (xmol)+3.199 10 ⁻⁹ m³/molCElectronegativityPauling scale: 1.63Re	mannann	Electronegativity	Pauling scale: 1.54	2
Electrical resistivity20 ×10 ⁻⁸ Ω m (at 20 °C)CVanadiumMagnetic susceptibility (χmol)+3.199 10 ⁻⁹ m³/molCElectronegativityPauling scale: 1.63Re			0	V
VanadiumMagnetic susceptibility (χ mol)+3.199 10 ⁻⁹ m³/molElectronegativityPauling scale: 1.63Re		Electrical resistivity	20 ×10 ⁻⁸ Ω m (at 20 °C)	C
Electronegativity Pauling scale: 1.63	Vanadium	n Magnetic susceptibility (xmol)	+3.199 10 ⁻⁹ m ³ /mol	
		<u>Electronegativity</u>	Pauling scale: 1.63	Re

 The valence electrons are located in the 3d subshell and 4S.
 The number of electrons with the same spin orientation is limited.

<u>Remark:</u>

Electronegativity is a <u>chemical</u> <u>property</u> that describes the tendency of an <u>atom</u> to attract <u>electrons</u>.

Paramagnetic

http://www.periodictable.com/

<	$r^2 \gg 1$	gevin-Larmor diamagnet	tism
χ ≈	$-0.99\ 10^{-5}\ Z\sum_{i=1}^{Z}\frac{1}{Z}$	$<0\left[\frac{r_i^2}{a_0^2}\right]$ $>$ $>$ $Atom radius$	1)
	Electrical resistivity	16.78 nΩ·m (at 20 °C)	2)
Copper	Electronegativity	Pauling scale: 1.90	
	Magnetic susceptibility	-6.86×10 ⁻¹¹ m ³ /mol	
	Electrical resistivity	59.0 nΩ·m (at 20 °C)	ele
Zinc	Electronegativity	Pauling scale: 1.65	fi
	Magnetic susceptibility(χ mol)	– 1.45×10 ⁻¹⁰ m ³ /mol	

1)The number of electrons with the same spin orientation is limited. 2) The external field modify the external orbit. 3) By the law Lenz the electrons create a magnetic field in opposition wit the external field. 4) The diamagnetism is localized in the atoms.

Ferromagnetism Heisenberg model (1932)

Antibonding

Not stable (Coulomb repulsion between protons)

- 2) The ferromagnetism is the result between the Coulomb interaction and the Pauli exclusion principle.
- The spontaneous spin orientation of the others electrons create a mean magnetic field called molecular field by Weiss.
- 4) The model is anisotropic.
- 5) The electrons are localized inside the atoms.

Ferromagnetism Fermi gas (Solid state physics)

Ferromagnetism Stoner model (1938)

The molecular field magnetizes the electron gas due to the Pauli paramagnetism (bootstrapping mechanism) without exeternal magnetic field. 2) $\delta n \downarrow$ are flip in $\delta n \uparrow$ sub-band close $E_F + \delta E$. The number of electrons moved is δn_{ℓ} . 3) The potential energy $\Rightarrow \Delta E_{pot} = -\frac{1}{2} Ug((E_F)\delta E^2)$ 3) Kinetic energy cost $\Rightarrow \Delta E_{kin} = \frac{1}{2}g((E_F)\delta E^2)$. 4) $\Delta E_{kin} + \Delta E_{pot} < 0$ $Ug(E_{F}) \ge 1$ "Stoner criterion" $g(E_F)$ (a) (c) Ni $U \cdot g(E_F)$ Fe

10

20

30

Antiferromagnetism chromium (molecular

The span in energy of the band valence increase when the distance between the atoms decrease. The gas of electrons have more space and thus the opposite spin are possible.

Ferrimagnetism (molecular quantum)

Valence Bond Theory (molecular physic)

Hybridisation: the concept of mixing atomic orbitals to form a new hybrid orbitals Suitable for the qualitative description of atomic bonding properties.

Linus Pauling

Hybridize

2s

2p

 sp^3

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 Printegens	16 Chalcogens	17	18
1	1 H Hydrogène 1,008	Atomique Sym ^{Nom} Masse	С	Solide	I		Mé	etaux	42 3	Métal	on-mé	taux			- notogens		273	2 He Hélium 4,0026
2	3 Li Lithium 6,94	4 Be Béryllium 9,0122	Hg H	Liquide Gaz	Э	létaux alc	Actini	des	ietals létaux de ansition	loïdes ost-trans	az rares		5 B Bore 10,81	6 C Carbone 12,011	7 N Azote 14,007	8 O Oxygène 15,999	9 F Fluor 18,998	10 Ne Néon 20,180
3	11 Na Sodium 22,990	12 Mg Magnésium 24,305	Rf	Inconn	u	alins				ition			13 Al Aluminium 26,982	14 Si Silicium 28,085	15 P Phosphore 30,974	16 S Soufre 32,06	17 Cl Chlore 35,45	18 Ar Argon 39,948
4	19 K Potassium 39,098	20 Ca Calcium 40,078	21 Sc Scandium 44,956	22 Ti Titane 47,867	23 V Vanadium 50,942	24 Cr Chrome 51,996	25 Mn Manganèse 54,938	26 Fe ^{Fer} 55,845	27 Co Cobalt 58,933	28 Ni Nickel 58,693	29 Cu Cuivre 63,546	30 Zn Zinc 65,38	31 Ga Gallium 69,723	32 Gemanium 72,630	33 As Arsenic 74,922	34 Se Sélénium 78,971	35 Br Brome 79,904	36 Kr Krypton 83,798
5	37 Rb Rubidium 85,468	38 Sr Strontium 87,62	39 Y Yttrium 88,906	40 Zr Zirconium 91,224	41 Nb Niobium 92,906	42 Mo Molybdène 95,95	43 TC Technétium (98)	44 Ru Ruthénium 101,07	45 Rh Rhodium 102,91	46 Pd Palladium 106,42	47 Ag Argent 107,87	48 Cd Cadmium 112,41	49 In Indium 114,82	50 Sn Etain 118,71	Sb Antimoine 121,76	52 Te Tellure 127,60	53 lode 126,90	54 Xe Xénon 131,29
6	55 CS Césium 132,91	56 Ba Baryum 137,33	57–71	72 Hf Hafnium 178,49	73 Ta Tantale 180,95	74 W Tungstène 183,84	75 Re Rhénium 186,21	76 OS Osmium 190,23	// Ir Iridium 192,22	78 Pt Platine 195,08	79 Au Or 196,97	80 Hg Mercure 200,59	81 TI Thallium 204,38	82 Pb Plomb 207,2	83 Bi Bismuth 208,98	84 Po Polonium (209)	85 At Astate (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89–103	104 Rf Rutherfordiu (267)	105 Db Dubnium (268)	106 Sg Seaborgium (269)	107 Bh Bohrium (270)	108 HS Hassium (277)	109 Mt Meitnérium (278)	110 Ds Damstadtiu (281)	111 Rg Roentgeniur (282)	112 Cn Copemicium (285)	113 Nh Nihonium (286)	114 Fl Flerovium (289)	115 Mc Moscovium (290)	116 LV Livermorium (293)	117 TS Tennessine (294)	118 Og Oganesson (294)
	Les masses atomiques entre parenthèses sont celles de l'isotope le plus stable ou le plus commun.																	
	Stableau Periodique Copyright du design et interface © 1997 Michael Dayan Ptable.com Demiere mise a jour 16 juin 2017 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71											71						
				La Lanthane 138,91	Ce Cérium 140,12	Praséodym 140.91	Nd Néodyme 144,24	Pm Prométhium (145)	Samarium 150,36	Europium 151,96	Gd Gadolinium 157.25	Tb Terbium 158.93	Dysprosium 162,50	HO Holmium 164.93	Erbium 167.26	Tm Thulium 168,93	Yb Ytterbium 173.05	LU Lutécium 174.97
				89 Ac Actinium (227)	90 Th Thorium 232,04	91 Protactinium 231,04	92 U Uranium 238,03	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Américium (243)	96 Cm Curium (247)	97 Bk Berkélium (247)	98 Cf Californium (251)	99 ES Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendéléviur (258)	102 No Nobélium (259)	103 Lr Lawrencium (266)