Borh magneton

Orbiting electrons form a current loop which give rise to a magnetic field.

$$
i=-\frac{e}{T}=-\frac{e v}{2 \pi r} \quad A=\pi r^{2}
$$

$$
\mu=-\frac{e v}{2 \pi} \pi r^{2}=-\frac{e v r m_{e}}{2 m_{e}} \quad \hbar=v m_{e} r
$$

For the electron: $\quad \mu_{b}=\frac{e \hbar}{2 m_{e}}=9.2710^{-24} \frac{\mathrm{~J}}{\mathrm{~T}}$

Magnetic moment of a current loop:

$$
|\mu|=i A
$$

area enclosed by current loop

For the electron, the Bohr magneton is the simplest model possible to the smallest possible current to the smallest possible area closed by the current loop

Rutherfod (1911) - Borh (1913) model of atom

1) Borh use the classical mechanics
2) The only permitted orbital are those for with $L_{\text {orb }}=n \hbar$
3) For these orbitals the electrons don't radiate electromagnetic waves
4) The energy of photon is: $E=h f$

$$
k=\frac{1}{4 \pi e_{0}} \quad r_{n}=\frac{\hbar^{2} n^{2}}{m_{e} k e^{2}} \quad r_{n}=a_{0} n^{2} \quad \underset{\text { Borh radius }}{m_{e} k e^{2}}=0.05297 \mathrm{~nm}
$$

Hydrogen energy levels (Borh- Rutherford Model)

Stern Gerlach experiment (1922)

A classic experiment that shows a difference between quantum and classical mechanics. Only two discrete deflections show up, corresponding to "spin up" and "spin down" for neutral particles.

Atomic silver source Spin magnetic - 2003 Thomson-Brooks/Cole moment

$$
\rightarrow \boldsymbol{\mu}_{s}=-g_{s} \frac{e}{2 m_{e}} \mathbf{S}_{z}=-g_{s} \frac{e}{2 m_{e}} m_{s} \hbar=-g_{s} \mu_{b} m_{s} \begin{aligned}
& m_{s}=+1 / 2 \\
& m_{s}=-1 / 2
\end{aligned}
$$

The spin orientation

Because of the uncertainty principle,
it is impossible to orient the spin S parallel to B

$$
\cos (\theta) S \geq \frac{\hbar}{2}
$$

$$
\begin{array}{ll}
m_{s}=+1 / 2 & (\text { spin up }) \\
m_{s}=-1 / 2 & (\text { spin down })
\end{array}
$$

Larmor precession

The Schrödinger equation (1922) to the hydrogen atom (without spin)

Kinetics energy
Potential energy
Total energy

$$
-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \psi(x, y, z)+V \psi(x, y, z)=E \psi(x, y, z)
$$

Wave function represent the probability amplitude. It is a deterministic function (M. Born).
Knowledge of $\Psi(r, t)$ then enables (in the Copenhagen interpretation) to know the dynamic of the wave function (its evolution in the space-time).

For the relativist case see Dirac equation.

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{2 \mu}{\hbar}(\mathrm{E}-\mathrm{V}) \Psi=0
$$

The Schrödinger equation to the hydrogen atom

The Schrödinger equation to the hydrogen atom Solutions of harmonic equation

$$
\frac{1}{\sin (\theta)} \frac{d}{d \theta}\left(\sin (\theta) \frac{d}{d \theta} P_{l}^{m_{l}}(\theta)\right)+\left[l(l+1)-\frac{m_{l}^{2}}{\sin ^{2}(\theta)}\right] P_{l}^{m_{l}}(\theta)=0
$$

Legendre polynomials

$$
\frac{d^{2} \Phi(\varphi)}{d \varphi^{2}}=-m_{l}^{2} \Phi(\varphi)
$$

$\left[P_{l}^{m_{l}}(\theta)\right]^{2} \mathrm{~d} \theta$
Quantum number I called the orbital quantum number, is a measure of the magnitude of the angular momentum associated with the quantum state $I=0,1,2,3, \ldots n-1$

The probability density to find an electron in an angle φ with an apperture angle $d \varphi$

Quantum number m_{ν} called the orbital magnetic quantum number is related to the orientation in space of the angular momentum vector

$$
-l \leq m_{l} \leq+l
$$

The Schrödinger equation to the hydrogen atom: orbital $2 p(n=2,1=1)$

$$
\begin{aligned}
& p_{0}\left.=R_{2,1}(r) P_{1}^{0}(\theta) \Phi(\phi)=\frac{1}{4(2 \pi)^{1 / 2}}\left(\frac{1}{a_{0}}\right)^{5 / 2} r \cos \theta e^{-\frac{r}{2 a_{0}}}=r \cos \theta \cdot f(r)=z \cdot f(r)=p_{z}\right) \\
& p_{ \pm 1}=R_{2,1}(r) P_{1}^{ \pm 1}(\theta) \Phi(\phi)=\mp \frac{1}{8 \pi^{1 / 2}}\left(\frac{1}{a_{0}}\right)^{5 / 2} r e^{-\frac{r}{2 a_{0}}} \sin \theta e^{ \pm i \phi} \\
&=\mp \frac{1}{2^{1 / 2}} r \sin \theta e^{ \pm i \phi} f(r) \quad \text { Different rotations: clockwise, } \\
& \text { counter-clockwise }
\end{aligned}
$$

The orbital angular momentum for $1=2$

$$
-l \leq m_{z} \leq+l
$$

Classical equation $\vec{L}=\vec{r} \times \vec{p}$
Larmor precession

Because of the uncertainty principle,
it is impossible to orient the orbital angular momentum I parallel to B

This figure shows the five quantized components I_{z} of the orbital angular
momentum for an electron with $\mathrm{I}=2$, as well as the associated orientations of the angular momentum vector (however, we should not take the figure

$$
L_{z}=m_{\ell} \hbar \quad L=\hbar \sqrt{\ell(\ell+1)}=\sqrt{6} \hbar
$$ literally as we cannot detect L this way)

Total angular momentum in a magnetic field

The total angular momentum can be visualized as processing about any externally applied magnetic field. We don't consider the spin-orbit interaction.
 It is a current loop $I=Z e v / 2 \pi r$ Which produces a magnetic field $\mu_{0} I / 2 r$ at the centre $B_{s o}=\mu_{0} Z e v / 2 \pi r^{2}$ $E_{s o}=-\mu_{b} B_{s o}$. Since $r \approx a_{0} / Z$ and $m_{e} v r=\hbar$

$$
E_{S o} \approx-\mu_{0} \mu_{\mathrm{B}}^{2} Z^{4} / 4 \pi \mathrm{a}_{0}^{3}
$$

Note if we consider that the spin-orbit, the formula indicates that spin orbit-coupling interactions are significantly larger for atoms that are further down a particular column of the periodic table.

The Schrödinger equation to the hydrogen atom: orbital 3d ($n=3,1=2$)

10 electrons maximum

The Schrödinger equation to the hydrogen atom: orbital $4 d$ ($n=4,1=3$)

$$
5 z^{3}-3 z r^{2}
$$

$5 x z^{2}-x r^{2}$

$z x^{2}-z y^{2}$

$x y z$

14 electrons maximum

$$
y^{3}-3 y x^{2}
$$

$x^{3}-3 x y^{2}$

Quantum Numbers

* The principal quantum number (n) has possible values of:

It describes the relative size of the orbital

Quantum Numbers

* The angular momentum quantum number (()
has possible values of:

$$
\ell=0,1,2, \ldots n-1
$$

$l=1$
It describes the shape of the orbital.

The value of ℓ is often referred to by a letter equivalent; $0=s, 1=p, 2=d, 3=f, \ldots$ (the rest are alphabetical)
$2 p_{z}$

* The magnetic quantum number (m_{ℓ}) has values:

$$
m_{l}=-1
$$

$$
m_{\ell}=-\ell, \ldots-1,0,1, \ldots l
$$

Quantum Numbers

Quantum Numbers

* The spin angular momentum number $\left(m_{s}\right)$
has possible values of:

$$
m_{s}= \pm \frac{1}{2}
$$

It describes the orientation of the spin.
The vertical axis is used as reference.

$\mid 1)=\left|+\frac{1}{2}\right\rangle$
$\mid y)=\left|-\frac{1}{2}\right\rangle$

Pauli exclusion principle (1925)

Wolfgang Pauli postulated the (Pauli) exclusion principle, which states that no two electrons in one atom can exist in the same quantum state.
"State" refers to the four quantum numbers n, ℓ, m_{e}, m_{s}. Obviously, all electrons have the same s.

Subshells Schrödinger (1922)

Subshell very important to capture or loss an electron

Subshell very important for the ligands

Subshell very important for the metals

Subshell very important for rare earths

14 electrons max

2 electrons max

Pauli exclusion principle (1925)

6 electrons max

Standard Notation of Fluorine

Number of electrons in the sub level 2,2,5

Hund's rule

Orbital Filling Order (Diagonal Rule).

It is a semi-empirical law with exceptions case
Minimize the coulomb interaction + Pauli exclusion principle.

The transition elements (d block)
orbital 3d ($n=3,1=2$)

10 electrons maximum

Orbital occupancy for the transition metals

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

It is preferable to use the exchange model

Paramagnetic Antiferromagnetic !!!! Néel temperature Antiferromagnetic or paramagnetic !!!! Néel temperature

Ferromagnetic

Diamagnetic

3d ferromagnetism

1) When the sub schell is not full.
2) Depend of the distance between the atoms and the radius shell 3d.
3) Exchange energy (Heisenberg 1927)

$$
\begin{aligned}
& \text { 4f subshell } \\
& \text { Co }: 3 d^{7} 4 s^{2} \rightarrow \mathrm{Co}^{2+}: 3 d^{7} \quad \mathrm{Gd}: 4 f^{\prime} 5 d^{1} 6 s^{2} \rightarrow \mathrm{Gd}^{3+}: 4 f^{\prime} \\
& \text { 3d magnetism } \\
& \text { created by } \\
& \text { itinerant electrons } \\
& 4 \text { flocal magnetism } \\
& \text { created by } \\
& \text { the atoms }
\end{aligned}
$$

Lanthanides (4f block)

Orbital model for H_{2}

Bonding

> Pauli exclusion principle forbid the same spin orientation.
symmetric for the waves, antisymmetric for the spin

Orbital model for H_{2}

Antibonding

Two different orbits 1S allow the same spin orientation.
symmetric for the spin, antisymmetric for the waves

Band theory (Solid state physics)

Now let's take a closer look at the energy levels in solid sodium. Remember, the 3s is the outermost occupied level

When sodium atoms are brought within about 1 nm of each other, the 3s levels in the individual atoms overlap enough to begin the formation of the $3 s$ band.

The 3s band broadens as the separation further decreases

Internuclear distance pm

Sommerfeld model of free electrons (1928)

1) We are in the non relativist case.
2) We don't consider the full subshells $\Sigma L_{i}=0$ and $\Sigma S_{i}=0$ until the subshell $3 p$ (included). It is a have a positive ion.
3) We consider the itinerant electrons as a gas (the electrons inside the subshell 3d and the last subshell 4s).
4) The itinerant electrons have a kinetic energy only.
5) It is a first approximation.

Heisenberg uncertainty principle (1927)

$$
\Delta p * \Delta r \geq \hbar / 2
$$

1)The Pauli exclusion principle and the uncertainty principle limit the number of electrons with a low velocity.
2) If you increase the number of electrons, you must increase their velocity because all the states with a lower energy are busy...

Fermi-Dirac distribution (Sommerfeld model)

- Each state can hold 2 electrons of opposite spin (Pauli's principle).
- Near zero degree Kelvin the free electrons have a kinetic energy.

For a transition metal, the augmentation of temperature is created by the nucleus vibrations. These vibrations obey to a

E (kinetic energy)
$T_{K}=0$

$\rho(E)=$ density of states

Bose-Einstein distribution.

Only the free electrons near the Fermi are

sensitive to the temperature

(Fermi-Dirac distribution).
The spin of these particles is oriented in the sense that the external field.
E_{F} (Fermi energy)

$$
E_{F}=\frac{\hbar^{2} k_{F}^{2}}{2 m}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \eta_{e}\right)^{2 / 3}
$$

Fermi Parameters for some metals (Sommerfeld model)

Element	Molar volume	electrons	density	Fermi energy calculated	Fermi temperature	Fermi velocity	electrons cm-3
	m^{3} / mol		$\mathrm{g} / \mathrm{cm}^{3}$	$E_{F}[\mathrm{eV}]$	$T_{F}\left[10^{3} \mathrm{~K}\right]$	$10^{\wedge} 8 \mathrm{~cm}^{-1}$	
Scandium	15,00×10-6	21	2.985				$4.010^{\wedge} 22$
Titanium	10,64×10-6	22	4.506				5.67 10^22
Vanadium	$8,32 \times 10-6$	23	6.01				7.20 10^22
Chromium	7,23×10-6	24	7.19				$8.3310^{\wedge} 22$
manganese	7,35×10-6	25	7.31	10.9	12.7	1.96	$8.19{ }^{10^{\wedge} 22}$
Fe	7,09×10-6	26	7.874	11.15	12.94	1.98	8.49 10^22
Co	6,67×10-6	27	8.9	11.7	13.58	2.03	$9.0110^{\wedge} 22$
Ni	6,59×10-6	28	8.902	11.74	13.62	2.03	9.14 10^22
Cu	7,11×10-6	29	8.96	7.04	8.17	1.57	8.47 10^22
Zn	9,16×10-6	30	7.14	9.47	10.9	1.82	6.57 10^22

Fermi surface for Ag Bloch model 1946 (crystallography)

\uparrow

$$
\mathrm{k}=\frac{4 \pi}{a}=39.210^{9} \mathrm{~m}^{-1}
$$

Atomic nucleus

$$
\mathrm{fcc} B Z
$$

Crystalline structure for Ag

$$
k_{F}=12.10^{9} \mathrm{~m}^{-1}
$$

The reference for k is the radius of the atom

$p * \lambda=h$
A velocity in a direction isn't possible if the wavelength is already occupied by a distance between two atoms.

$$
\frac{p}{\hbar}=\mathrm{k}<4 \pi / a
$$

Free Electrons for the metals in a Magnetic Field (Pauli paramagnetism)

"The difference between paramagnetism and Pauli
 paramagnetism is that the latter applies to a metal because it describes the tendency of free electrons in an electron gas to align with an applied magnetic field." Inna Vishik (Standford)

Magnetic Spin - Susceptibility
Low temperature

$$
\chi_{P}=\frac{M}{H}=\frac{3 \eta_{e} \mu_{0} \mu_{B}^{2}}{2 E_{F}}
$$

(Pauli Paramagnetism)

Paramagnetism for free electrons.

Fermi gas of electrons without an external magnetic field.
The electrons are free (no subshell)

1) The order of the Fermi kinetic energy is high $T \approx 10000$ K.
2) The reference temperature is $\approx 300 \mathrm{~K}$.
3) The thermal energy can increase the kinetic energy only for a very small number of particles.
4) The spin of these particles is oriented in the sense that the external field.
5) The paramagnetism is created by these electrons...

Landau diamagnetism (1930) $T \approx 0 K$

1) A gas of free electrons in a magnetic field.
2) Free electrons move along spiral trajectories.
3) Lenz's law.
4) Diamagnetic effect.
5) The energy of the free electrons depend of
A) The kinetic energy is principally limited by the energy of Fermi.
B) The quantification of the energy created by the circular movement of the electrons

$$
E_{l}=\left(l+\frac{1}{2}\right) \hbar \omega_{c} . \quad M_{\text {Landau }}=-\frac{N \mu^{2}}{2 k_{B} T_{F}} B \quad \chi_{\text {Landau }}=-\frac{\chi_{\text {Pauli }}}{3}
$$

$$
\begin{array}{cl}
\text { Titanium } & \text { Landau diamagnetic susceptibility (xmol) } \\
\text { Vanadium } & \text { Landau diamagnetic susceptibility (xmol) } \\
-28.610^{-6} \mathrm{~cm}^{3} / \mathrm{mol}
\end{array}
$$

Landau diamagnetism $T \approx 0 K$

Fermi gas of electrons without an external magnetic field.

Fermi gas of electrons with an external magnetic field.

The oscillations

The oscillations

Cyclotron frequencies

Haas-van Halphen effect (1930) $T \approx 0 K$

1) The cyclotron frequencies increase with the magnetic field.
2) The diamagnetic field increase with the energy.
3) The diamagnetic field stopped with the E_{F}.
4) The diamagnetic field increase again with the next cyclotron frequency.

Brillouin-Langevin paramagnetism (statistical physics)

1) Each atom is independent.
2) For each atom, the total magnetic moment μ_{J} (orbitals + spin) is the same for each atom. It is calculate with the quantum mechanics.
3) The distribution of the magnetic moments obey to the Boltzmann distribution.
4) We calculate < total magnetic moment > for one atom and we multiply by N.
5) We use the Z axis as reference.

Paramagnetism (quantum mechanics)

Element

 ScTi
V

Unpaired Electrons

Partial Orbital Diagram
$4 p$

1) The valence electrons are more located in the 3d subshell 4S.
2)The number of electrons with the same spin orientation is limited.

Remark:

Electronegativity is a chemical property that describes the tendency of an atom to attract electrons.

Landau diamagnetism (1930)

1) A gas of free electrons in a magnetic field.
2) Free electrons move along spiral trajectories
3) Lenz's law
4) Diamagnetic effect

$$
M_{\text {Landau }}=-\frac{N \mu^{2}}{2 k_{B} T_{F}} B \quad M=M_{\text {Pauli }}+M_{\text {Landau }}=\frac{N \mu^{2}}{2 k_{B} T_{F}} B
$$

Ferromagnetism (Solid state physics)

Antiferromagnetism chromium (molecular physic)

Uniform distance between the atoms.

Non uniform distance between the atoms.

Commensurate SDW (C-SDW)
Wave follows periodicity of underlying atomic lattice

To reduce the energy, we have a alternation of the total magnetic moment (Pauli principle)

Ferrimagnetism (molecular quantum physic)

Ferrimagnets (ferrites) behave similar to ferromagnets

Super-exchange interaction

Magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$

Oxygen atoms (small sphere in red)
Fe2+ (tetrahedral sphere in blue), Fe3+ (octahedral sphere grey)

