Studies on slow extraction losses in LSS2

L.S. Stoel, B. Balhan, M.A. Fraser, B. Goddard, V. Kain, F.M. Velotti, C. Wiesner

Outlook

- Slow extraction
- Loss problem + solution
- Simulations and future MDs

Slow extraction

septum

$$
\left|Q_{1}-Q_{\text {res }}\right|>\left|Q_{2}-Q_{\text {res }}\right|>\left|Q_{3}-Q_{\text {res }}\right|
$$

Slow extraction

*Momentum extraction is nominal, but amplitude extraction was recently tested in MD

ZS alignment

- 5 tanks each 3.13 m long, wires of 60 or $100 \mu \mathrm{~m}$
- Change position of each upstream/downstream end of the anodes and optimize on BLM signal

LSS2 activation - 30h

LSS2 activation

2015:

- Highest extracted yearly flux in years
- End of year RP survey showed very hot ZS
\Rightarrow Formation of SPS Losses and Activation WG, keep
losses/activation in check, reduce for Beam Dump
Facility operation
2016:
- Losses kept under control, several ZS re-alignments throughout the year
- ZS less activated at end of year
- ... but TPST significantly more activated

SEXTANT 2 - Comparaison Novembre 2016-Novembre 2015
Survey 30 heures de décroissance

TPST losses

losses on e.g. ZS3 reduced with lower density of beam:

TPST losses

May $3^{\text {rd }}, 16: 48$

Last Aqn : 04-05 02:15:38 BESH. 21758 ت天

May $4^{\text {th }}, 02: 15$

Normalized losses

- Figure of merit: losses per extracted proton [Gy/p+]
- Last few years worse than before LS1, particularly bad in the weekend of June $18^{\text {th }}$.

18 ${ }^{\text {th }}$ June 2017
Extracted p^{+}flux: 3 E 13 ppp

22 ${ }^{\text {th }}$ June 2017
Extracted p^{+}flux: 3 E 13 ppp

Normalized losses

Early May: alignment, losses worsen with intensity ramp
May $20^{\text {th. }}$: realign, had to increase TPST loss to be able to lower the ZS loss
June $2^{\text {nd }}$: realign, increase the TPST even more, to lower ZS, still neither was 'good'

June $18^{\text {th }}$: losses get really bad at high duty cycle (Not related to magnetic cycle!)

ZS2 problems: weekend of 17-18 June 2017

extracted beam intensity $\left[\mathrm{p}^{+} / 15 \mathrm{mins}\right]$
losses on ZS2 BLM

Normalized losses

Early May: alignment, losses worsen with intensity ramp
May $20^{\text {th. }}$: realign, try to keep TPST low, but sacrifice a bit to lower the ZS
June $2^{\text {nd. }}$: realign, sacrifice more on the TPST, to lower ZS, still not good

June $18^{\text {th }}$: losses get really bad at high duty cycle June $19^{\text {th }}$: retract ZS2 cathode by 2 mm June $22^{\text {nd. }}$: realign, TPST loss back down

Following weeks: Some quick MDs changing anode gaps and voltage \rightarrow further improvement

Now: nominal voltage, changed gap sizes, back to expected normalized losses and stable!

TPST losses

losses on e.g. ZS3 reduced with lower density of beam:

TPST losses

ZS losses

Simulations

- Slow extraction over many turns with changing optics in MAD-X thin track with pycollimate (scattering routine by F.M. Velotti, SPS OP)

Simulations - Girder scan

- Upstream position fixed, scan downstream position to optimize girder angle
- Assume perfect alignment of the anodes: model 1 long septum blade with $200 \mu \mathrm{~m}$ effective width and correct total density
- Primary loss + scattering, but no showers/BLMs
- Collaborating with EN-STI and RP to create FLUKA model of LSS2

Future MDs - Dynamic bump

- Slowly changing x and x^{\prime} bumps to counteract movement of the beam throughout the spill (dispersion, changing optics)
- Document for MPP approval of first tests of the bumps is being prepared

Nominal

Future MDs - Dynamic bump

- Slowly changing x and x^{\prime} bumps to counteract movement of the beam throughout the spill (dispersion, changing optics)
- Document for MPP approval of first tests of the bumps is being prepared

Dynamic bump

Future MDs - Dynamic bump

- Angular spread influences losses, so correct change in angle during the spill

Future MDs - Diffuser

- Short wire array upstream of the ZS to 'cut' (scatter) the beam, alignment procedure like ZS
- Construction starting soon at Wigner institute
- Aiming for installation in YETS, MDs in 2018

Courtesy D. Barna

Future MDs - Diffuser

- Short wire array upstream of the ZS to 'cut' (scatter) the beam, alignment procedure like ZS
- Construction starting soon at Wigner institute
- Aiming for installation in YETS, MDs in 2018

Preliminary results, changes to code in progress

Conclusion

- LSS2 losses finally back to what they used to be
- Losses need to be much lower for Beam Dump Facility (~ x4)
- MDs will test future loss mitigation proposals, but also benefit current operation
- Dynamic bump
- Diffuser
- Crystal 'shadowing'
- Collimating scattered particles
- Multipoles

```
(x)
```


Crystal assisted slow extraction

- Crystal channels particles that would end up hitting the septum, so that they reach the extraction channel: "shadowing".

Phase-space folding

- Use multipoles to change beam density
- Decapoles in SPS (IPAC'17)

- Machine Development studies with octupoles?

ZS tanks and wires

TPST losses

