
A new FUSE based file
system client for EOS

Andreas-Joachim Peters 
for the EOS team

eosxd

Contents
• Introduction

• Architecture

• Implementation

• Performance

• Known issues

• Outlook

eosxd

Contents
• Introduction

• Architecture

• Implementation

• Performance

• Known issues

• Outlook

eosxd

parts of this presentation

are going to be very technical!

Introduction

Background
• Background to /eos

• a filesystem mount is standard API supported by every application -
not always the most efficient for physics analysis

• a filesystem mount is very delicate interface  
- any failure translates into applications failures, job inefficiencies etc.

• FUSE is a simple (not always) but not the most efficient way to
implement a filesystem

• implementing a filesystem in general is challenging

• this is the 3rd generation of a FUSE based client for EOS

eosxd

Introduction

Files vs Inodes
• EOS native implementation (XRootD) is

• access by URL towards meta data server

• access by inode towards storage server

• Filesystems are implemented as trees  
starting at a root node 1 with name ‘/‘. Each leave node
is identified by a pair of [parent node, name].

• access is via i-nodes, not by path

• fundamental for atomic rename operations

eosxd

• improve posix-ness and atomicity

• implement file locking (byte-range) - e.g. sqlite needs that

• implement synchronous & asynchronous IO (O_SYNC)

• similar posix-ness as AFS - absorb some traditional use cases

• possibility for NFS4, CIFS, S3 exports

• add more client side caching for performance but
implement cross-client consistency

• manage caches via CAP token 
(cache authority provider)

• strong security mechanism e.g. don’t provide only a trust client model

Introduction
Goal of reimplementationeosxd

Introduction
Architectureeosxd

kernel

libfuse

low-level API

meta data dataCAP store

MGM - FuseServer

meta data backend XrdCl::Proxy

XrdCl::FileXrdCl::Filesystem

 operations.getattr
 operations.lookup
 operations.setattr
 operations.opendir
 operations.access
 operations.readdir
 operations.mkdir
 operations.unlink
 operations.rmdir
 operations.rename
 operations.open
 operations.create
 operations.mknod
 operations.read
 operations.write
 operations.statfs
 operations.release
 operations.releasedir
 operations.fsync
 operations.flush
 operations.setxattr
 operations.getxattr
 operations.listxattr
 operations.removexattr
 operations.readlink
 operations.symlink
 operations.getlk
 operations.setlk

FST - xrootd

hb

queue

com

async

asyncsyncsyncsync

sync

MGM - FuseServer

hb

Architecture
Client Heartbeateosxd

eosxd sends regular heartbeat messages. The default interval is 1s. eosxd receives the heart beat interval with the first handshake.
If many clients are used the interval can be reconfigured using ‘eos fusex hb {1..15}’.

client name host name version status startup time last hb [s]hb flight time[ms] client uuid #caps

every 60s clients attach monitoring
information to a heartbeat

HINT: if your local clock drift + network latency > 2s, eosxd will fail requests and return EL2NSYNC

Cache consistency
Cache Authority Provider Tokens

eosxd

message cap {
 fixed64 id = 1; //< file/container
 fixed32 mode = 2; //< granted mode
 fixed64 vtime = 3; //< valid until unix timestamp
 fixed64 vtime_ns = 4; //< valid ns resolution
 sfixed32 uid = 5 ; //< user id
 sfixed32 gid = 6 ; //< group id
 string clientuuid = 7; //< client uuid
 string clientid = 8; //< client id
 string authid = 9; //< auth id
 fixed32 errc = 10; //< error code
 fixed64 clock = 11 ; //< vector clock of the file/container
 fixed64 max_file_size = 12; //< maximum file size
 quota _quota = 13; //< quota information for this cap
};

Every FUSE clients retrieves first a CAP token for a given directory inode.
This object gets stored on the MGM and eosxd client and has a default lifetime of 300s. The token is
used to identify whom to call if a directory inode changes meta data or listing information.  
A CAP token has embedded several additional policies e.g. client identity, client permissions,
maximum file size policy and quota information.

getcap

eosxd

MGM

sync

Cache consistency
Cache Authority Provider

Callbackseosxd
Whenever meta data information changes on the MGM two callbacks can be invoked
• internal broadcast (triggered by one eosxd client, broadcasts to all concerned clients - not

himself)
• external broadcast (triggered by external clients like xrdcp, cernbox - broadcasts to all

concerned clients)

eosxd MGMasync

eosxd

eosxd

async

async

broadcast
currently two types of broadcast messages used (eosxd protocol version 2)
• lease: drop metadata and listing
• md: new file meta data record

authentication uuid client connection id

client uuid

granted permissions

validity in seconds

Cache consistency 
MGM Console Interface

Who currently uses which directory?

Evict a client (leads to a forced umount on client side)

eosxd

eosxd

Client side caching 
Meta Data Caching

kernel cache
entry cache (listing)
attribute cache (stat)

[default lifetime 180s + 5s neg. cache]

on-disk persistent KV store
entry cache (listing)
attribute cache (stat)

v-node table (inode translation local/remote)

in-memory meta-data map
[managed via callbacks and FUSE]

eosxd

kernel optional

optional

message md {
 enum OP { GET = 0; SET = 1; DELETE = 2; GETCAP = 3; LS = 4; GETLK = 5; SETLK = 6; SETLKW = 7; BEGINFLUSH = 8; ENDFLUSH = 9;}
 enum TYPE { MD = 0; MDLS = 1; EXCL = 2;}

 fixed64 id = 1; //< file/container id
 fixed64 pid = 2; //< parent id
 fixed64 ctime = 3 ; //< change time
 fixed64 ctime_ns = 4 ; //< ns of creation time
 fixed64 mtime = 5 ; //< modification time | deletion time
 fixed64 mtime_ns = 6 ; //< ns of modification time
 fixed64 atime = 7 ; //< access time
 fixed64 atime_ns = 8 ; //< ns of access time
 fixed64 btime = 9 ; //< birth time
 fixed64 btime_ns = 10; //< ns of birth time
 fixed64 ttime = 11 ; //< tree modification time
 fixed64 ttime_ns = 12; //< ns of tree modification time
 fixed64 pmtime = 13 ; //< tree modification time
 fixed64 pmtime_ns = 14; //< ns of tree modification time
 fixed64 size = 15 ; //< size

disk

Client side caching 
Data Cachingeosxd

file start cache

kernel buffer cache

journal cache

page cache

offset 0 … 2M (default) 
caching the first 2M of a file

size 128M (default) 
used as a write-back cache, cleaned on flush

- kernel cache is invalidated via CAP callbacks if files get modified
- file start cache is invalidated via CAP callbacks 

(file cookie defined by inode,mtime,size)
- volume based cache cleaning policy
- by default under /var/eos/fusex/cache/

- journal cache is used to persist write operations in  
flight and to aggregate small sequential writes -  
journal is truncated with each successful FUSE flush  
call

3 cache layers

eosxd

Remote IO  
Data IOeosxd

XrdCl::Proxy is an extension of the standard XRootD XrdCl::File class providing
read-ahead and a high-level asynchronous API methods.  

read-ahead strategies
• none
• static read-ahead window
• dynamic read-ahead window (window is increased with every new prefetch  

until max-size) 

read-ahead is disabled if a read falls outside the read-ahead window.  

By default eosxd uses a dynamic window starting at 1M scaling to 8M. The read-ahead  
window has an impact on the memory footprint.

The XrdCl::Proxy class measures the read-ahead efficiency.

Remote IO  
Data IOeosxd

XrdCl::Proxy introduces a latency-free asynchronous API, which is not provided  
by XrdCl::File e.g. you cannot issue a write before an open has finished a.s.o  

- OpenAsync
- ScheduleWriteAsync
- ScheduleWriteAsync
- ScheduleWriteAsync
- CloseAsync  

The corresponding barrier functions are:
- WaitOpen
- WaitWrite
- WaitClose  

And state functions:
- IsOpen
- HadFailures
- IsClosed
- …

=> reason: an open can redirect to another machine,  
but writes should be send only  

to the final target. You dont’ want to send writes to your  
meta data server!

half-asynchronous write case 
Data IOeosxd

create

write 1

write 2

write 3

write 4

write 5

flush

release

FUSE op file cache journal

create ino.dc create ino.jc OpenAsync

write1 ino.dc write1 ino.jc

write 2 ino.dc write 2 ino.jc

write 3 ino.jc
fc full

jc full

Opened
ScheduleWrite 1

WriteAsync 2

WriteAsync 3
WaitWrite

write 4 ino.jc

write 5 ino.jc

HadFailures

WriteAsync 4

WriteAsync 4

WaitWrite

CloseAsync

A
p
pl
ic
at
io
n

WriteAsync 1

Synchronous write case 
Data IOeosxd

create (O_SYNC)

write 1

write 2

write 3

write 4

write 5

flush

release

FUSE op
OpenAsync

OpenedScheduleWrite 1

WriteAsync 2

WriteAsync 3

WaitWrite

WriteAsync 4

WriteAsync 4

CloseAsync

A
p
pl
ic
at
io
n

WriteAsync 1

WaitWrite

WaitWrite

WaitWrite

WaitWrite

local caching is bypassed

file cache journal

• recovery is implemented inside eosxd (not using
XrdCl::File recovery)

• falls back to all available replicas/servers

• uses “?tried=<machine” CGI

• retry period in case all servers are offline can be
configured - default 1day

Read Recovery 
Data IOeosxd

MGM

FST1

FST2

1

2

3

4

Write Recovery 
Data IOeosxd

• recovery is steered from the client

• in case of write failures two recovery scenarios exist

• new file was created and all data is still in local caches

• recreate inode placement and replay local caches

• some data exists only in FSTs, update still in local caches

• stage from available location into local file

• recreate inode placement, upload staged file and replay local caches

• requires that the file is still readable

• client uses the ‘global flush’ facility e.g. no client can open a file which is currently
being repaired by a client

• repair window etc. is configurable

MGM

FST1,2

FST1’,2’

1

2

3

4

• XrdCl::Proxy uses two buffer manager (read ahead+ write) to avoid memory explosion

• XrdCl:Proxy limits each manager to max. 1Gb of data in flight

• buffers of a default size of 128k (max kernel write) 
are recycled in a queue with max. 128 items  
[max. idle persistent size 16 MB]

• e.g. important of the client writes data faster than the outgoing network pipe can
absorb

• Normal reads require additionally temporary buffers

• served by third buffer manage with 128 x 128k idle persistent size

• if more read buffers are required, they are allocated as needed

• total idle persisted buffers are 3 x 16 MB = 48 MB

OOM 
Memory Managementeosxd

queued

inflight

eosxd

Feature Summary
Asynchronous & Synchronous IO (real fsync & O_SYNC)
Metadata caching (optional stable inodes)
Data caching/journaling
Kernel Metadata & Data caching support
IO error recovery
Symlinks
Byte-range locking
optional extended attributes (birth time eos.btime)
rm -rf level protection
FSYNC filter (removes O_SYNC flag for certain file types)
CPU core affinity + high scheduler priority (-10)
autofs support
shared & non-shared mount (by root, by user)
support kerberos/X509 authentication, trusted unix
memory buffer tracking & recycling
client side memory & latency monitoring
EOS ACLs 

non (yet) supported:
POSIX ACLs (easy with kernel 4.9++)
hardlinks

Measurements 
Performance Metricseosxd

1000x mkdir = 870/s
1000x rmdir = 2800/s
1000x touch = 310/s
untar (1000 dirs) = 1.8s
untar (1000 files) = 2.8s

dd bs=1M

M
B/

s

0

120

240

360

480

1 2 3 4 5

wr 1 GB files wr 4 GB files rd 1 GB files rd 4GB files

fusex-benchmark 
Performance Metricseosxd

dedicated stress test written to verify race/performance sensitive workloads
[root@slc7 ptest]# /tmp/fusex-benchmark
>>> test 0001
>>> test 0002
>>> test 0003
>>> test 0004
>>> test 0005
>>> test 0006
>>> test 0007
>>> test 0008
>>> test 0009
>>> test 0010
>>> test 0011
>>> test 0012
>>> test 0013

 #0001 : Test::create-delete-loop 2949.578 ms
 #0002 : Test::mkdir-flat-loop 97.297 ms
 #0003 : Test::rmdir-flat-loop 7.999 ms
 #0004 : Test::create-pwrite-loop 302.913 ms
 #0005 : Test::delete-loop 17.351 ms
 #0006 : Test::mkdir-p-loop 387.817 ms
 #0007 : Test::echo-append-loop 7267.009 ms
 #0008 : Test::rename-circular-loop 1606.942 ms
 #0009 : Test::truncate-expand-loop 518.711 ms
 #0010 : Test::journal-cache-timing 627.372 ms
 #0011 : Test::dd-diff-16k-loop 1069.299 ms
 #0012 : Test::dd-diff-16M-loop 3328.005 ms
 #0013 : Test::write-unlinked-loop 6654.631 ms

[root@xxx tree1]# cat /var/log/eos/fusex/fuse.dev.stats
ALL Execution Time 1.66 +- 12.30

who command sum 5s 1min 5min 1h exec(ms) +- sigma(ms)

ALL :sum 1370516 0.00 0.02 548.47 380.80 -NA- +- -NA-

 ALL access 62 0.00 0.00 0.20 0.02 0.06882 +- 0.01530
 ALL create 295 0.00 0.00 0.98 0.08 1.73413 +- 2.48593
 ALL flush 40300 0.00 0.00 67.87 11.20 0.08496 +- 0.02907
 ALL forget 458 0.00 0.00 1.53 0.13 0.00076 +- 0.00123
 ALL fsync 22 0.00 0.00 0.07 0.01 53.08414 +- 38.99056
 ALL getattr 653 0.00 0.02 1.84 0.18 0.17546 +- 0.07830

ALL getxattr 0 0.00 0.00 0.00 0.00 -NA- +- -NA-
ALL listxattr 0 0.00 0.00 0.00 0.00 -NA- +- -NA-

 ALL lookup 481 0.00 0.00 1.59 0.13 0.00562 +- 0.00306
 ALL mkdir 163 0.00 0.00 0.55 0.05 1.93330 +- 5.61503

ALL mknod 0 0.00 0.00 0.00 0.00 -NA- +- -NA-
 ALL open 20001 0.00 0.00 33.44 5.56 0.13977 +- 0.02817
 ALL opendir 228 0.00 0.00 0.76 0.06 0.42964 +- 0.68154
 ALL read 110 0.00 0.00 0.37 0.03 9.50537 +- 36.90263
 ALL readdir 186 0.00 0.00 0.62 0.05 0.00666 +- 0.00375

ALL readlink 0 0.00 0.00 0.00 0.00 -NA- +- -NA-
 ALL release 20296 0.00 0.00 34.42 5.64 0.00975 +- 0.00455
 ALL releasedir 228 0.00 0.00 0.76 0.06 0.00243 +- 0.00143

ALL removexattr 0 0.00 0.00 0.00 0.00 -NA- +- -NA-
ALL rename 0 0.00 0.00 0.00 0.00 -NA- +- -NA-
ALL rm 0 0.00 0.00 0.00 0.00 -NA- +- -NA-

 ALL rmdir 163 0.00 0.00 0.55 0.05 0.05919 +- 0.01316
 ALL setattr 3 0.00 0.00 0.00 0.00 3.37133 +- 0.25233

ALL setattr:chmod 0 0.00 0.00 0.00 0.00 -NA- +- -NA-
ALL setattr:chown 0 0.00 0.00 0.00 0.00 -NA- +- -NA-

 ALL setattr:truncate 3 0.00 0.00 0.00 0.00 3.18167 +- 0.23384
ALL setattr:utimes 0 0.00 0.00 0.00 0.00 -NA- +- -NA-
ALL setxattr 0 0.00 0.00 0.00 0.00 -NA- +- -NA-

 ALL statfs 3 0.00 0.00 0.01 0.00 0.38000 +- 0.45679
ALL symlink 0 0.00 0.00 0.00 0.00 -NA- +- -NA-

 ALL unlink 294 0.00 0.00 0.98 0.08 0.38519 +- 1.11495
 ALL write 1286567 0.00 0.00 401.94 357.48 0.03366 +- 0.00880

eosxd statics for fusex-benchmark

1.3 M FuseOPS

on EL7 machine: max 20kHz write IOPS 

fsync slowest operation (fsync’s FST disk)

QA 
Code Certification

developed dedicated certification script eos-fusex-certify

1.build zlib rpm (autotools)
2.git clone
3.rsync trees
4.sqlite tests
5.microtests
6.build eos rpm
7.test write recovery

eosxd

Comparison to AFS 
Microtest Performanceeosxd

production AFS volume compared to EOS instance (1000 disks / 5PB / 50 nodes)

Comparison to AFS 
Microtest Performanceeosxd

AFS does not fsync

production AFS volume compared to EOS instance (1000 disks / 5PB / 50 nodes)

Comparison to AFS 
Microtest Performanceeosxd

AFS does not fsync

production AFS volume compared to EOS instance (1000 disks / 5PB / 50 nodes)

• untar linux source (65k files/directories)
• compile xrootd
• compile eos

Comparison to AFS 
Daily workeosxd

0

100

200

300

400

untar linux compile xrootd compile eos

EOS AFS WORK AFS HOME LOCAL

When comparing, keep in mind: AFS is a kernel implementation, eosxd user space

• race condition/implementation fault:  
listing vs invalidation callback vs kernel cache

• leads to invisible or ghost entries in listing (in
particular when used via NFS)

• now fully understood - WIP - fixed in next release

• quota enforcement is (too) lazy e.g. clients can
overrun quota within 300s window if files are
produced on several machines

Comparison to AFS 
Known Issueseosxd

Configuring eosxd
Configuration Fileeosxd

https://gitlab.cern.ch/dss/eos/tree/master/fusex
All you need to know is explained here:

Simplest way to mount with default settings:
mount -t fuse eosxd eosuat.cern.ch:/eos/scratch /eos/scratch

MGM host MGM path local mountdir

Mounting with configuration files is explained here:
https://gitlab.cern.ch/dss/eos/tree/master/

fusex#configuration-default-values-and-avoiding-
configuration-files

https://gitlab.cern.ch/dss/eos/tree/master/fusex#configuration-default-values-and-avoiding-configuration-files
https://gitlab.cern.ch/dss/eos/tree/master/fusex#configuration-default-values-and-avoiding-configuration-files

Inspecting eosxd
Statistics File

ALL inodes := 1 inodes known to the mount
ALL inodes-todelete := 0 inodes which still need to be deleted
ALL inodes-backlog := 0 inodes which are still to be flushed
ALL inodes-ever := 1 inodes ever in use
ALL inodes-ever-deleted := 0 inodes ever deleted
ALL inodes-open := 0 files currently open
ALL inodes-vmap := 1 map size local/remote inode translation
ALL inodes-caps := 0 map size of CAP token

ALL threads := 17 threads in use
ALL visze := 336.41 Mb virtual memory size
All rss := 53.10 Mb physical memory size
All wr-buf-inflight := 0 b size of write buffers in flight
All wr-buf-queued := 0 b size of write buffers recycled
All ra-buf-inflight := 0 b size of read-ahead buffers in flight
All ra-buf-queued := 0 b size of read-ahead buffers recycled
All rd-buf-inflight := 0 b size of read buffers in flight
All rd-buf-queued := 0 b size of read buffers recycled
All version := 4.2.11 eosxd version
ALl fuseversion := 28 fuse protocol version
All starttime := 1517583072 start time unix
All uptime := 1 uptime in seconds
All instance-url := e.cern.ch MGM host
--

cat /var/log/eos/fusex/fuse[.instance].stats
eosxd

http://e.cern.ch

eosxd
Short-term Q1 Roadmapeosxd

1.finalise and certify production quality release with  
protocol version 2  
leases & file update broadcast

2.validate NFS & CIFS gateway configuration

3.validate OS X client

4.performance tuning  
- sync->(half-)async MD flush queue (for high latency links)

• remove ZMQ, use SSI (see CTA talks)

• implement protocol version 3

• distinguish shared & exclusive lease

• shared lease: create/mkdir must be sync call

• exclusive lease: create/mkdir can be async call 
= 3 x performance boost (300 files/s => 1000 files/s)

• use differential broadcasts  
(instead of invalidating cache, broadcast what has changed)

• support multi MGM deployments

Enhancements
Possible Evolutioneosxd

• implement Overlay Archive Volumes to get rid of  
the many small files in EOS 
 
[think of ZIP archives with COW overlay files]

• standard behaviour

• support RICH acls (requires new kernel)

• support hardlinks

• evaluate permissions on files

• FUSE3 write-back cache (requires new kernel)

Enhancements
Possible Evolutioneosxd

Summary
eosxd

• implementing a reliable & performant filesystem client is a complex
task

• re-implementation has good performance indicators and much
improved posix-ness

• nevertheless EOS by design is not full posix compliant - similar to AFS

• FUSE can not compete in some aspects with a kernel FS driver

• implementation is almost feature complete (missing hardlinks)

• we will certainly collect production experience this year

• target use is with QuarkDB backend - it is a threat to the in-memory namespace

A gentil reminder: if you need a parallel filesystem, use one.
If you need a posix filesystem, use one.

If you can use a local filesystem, use one.
eosxd is neither of the latter.

Acknowledgments
• journal cache & thread pool implementation by  

M. Simon

• strong security and deep dead-lock debugging by  
G. Bitzes

• server-side CITRINE port by E. Sindrilaru

• CI integration J. Makai

• valuable feedback, packaging, testing and discussion with
the CERN Ops team and AFS guru R. Toebbicke

eosxd

